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ABSTRACT  

Energy systems with a high portion of renewable energy from wind and solar power can suffer 

from fluctuations in production due to weak winds or cloudy weather, which may affect the 

electricity price. When producing heat and power in a combined heat and power plant, an 

additional heat storage tank can be used to store the heat surplus which is obtained when the 

power production is high, and the heat demand is low. To optimize heat and power production 

economically, short-term planning can be applied. Short-term planning covers the production 

in the near future of 1-3 days. The optimization in this degree project is based on the district 

heating production, which means that the heating demand always needs to be fulfilled. The 

district heating production is based on the weather. Therefore a suitable period for simulation 

is three days due to the accuracy of the weather forecasts are reasonable. The optimization is 

performed on the district heat system in Gävle, Sweden. The system comprises several different 

production units, such as combined heat and power plants, backup plants, and industrial waste 

heat recovery. Two different models are made, one using linear programming and one using 

mixed integer non-linear programming. The model stated as a linear programming problem is 

not as accurate as of the one stated as a mixed integer non-linear programming problem which 

uses binary variables. Historical input data from Bomhus Energi AB, a company owned 

together by the local heat and power supplier Gävle Energi AB and the pulp and paper 

manufacturer BillerudKorsnäs AB, was given to simulate different scenarios. The different 

scenarios have various average temperatures and in some scenarios are there some issues with 

the pulp and paper industry affecting the waste heat recovery. In all scenarios is the heat 

storage tank charged when the demand is low and then discharged when the demand increases 

to avoid starting some of the more expensive backup plants if possible. The simulation time 

varies a lot between the two approaches, from a couple of seconds to several hours. Particularly 

when observing scenarios with a rather high demand since the backup generators use binary 

variables which take a lot of time to solve.        

Keywords: Short-term planning, Optimization, District heating, Linear programming, 

Mixed integer non-linear programming, Branch and bound, Heat storage, 

MATLAB, TOMLAB  
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SUMMARY  

Renewable energy systems such as wind and solar power may affect fluctuations in the power 

grid caused by weak winds and cloudy weather. The fluctuations in the power grid can affect 

the electricity price. Producers at combined heat and power plants want to produce electricity 

when the price is high to increase the revenues. When producing electricity, a significant 

amount of heat is produced as a by-product. The heat is often inserted to a district heating grid. 

If the amount of produced heat exceeds the heating demand, the heat surplus must be stored 

to remain a high efficiency.  

The purpose of this degree project is to develop a process model that can optimize how the 

production units should operate and how the heat storage tank should be charged and 

discharged to provide the best economic outcome. The model is based on a prognosticated heat 

demand, which must be fulfilled.   

To get a better understanding of the problem as well as finding suitable approaches to solve 

the problem is a comprehensive literature study made. Most of the information is gathered 

from a similar research project, scientific papers, and books related to the field. The primary 

databases used to find scientific papers and research projects are Google Scholar, Research 

Gate, and Science Direct. A study visit to the different facilities in Gävle is made to gain a better 

understanding of the production units and the distribution system. To get relevant input data 

about the various production units, a meeting with the process engineers at BillerudKorsnäs 

AB, Bomhus Energi AB, and Gävle Energi AB is held. The input data have a central role in the 

development of the model. 

The model is created in MATLAB. It runs the main script, which calls on several functions 

related to the production units and the optimization. Since the problem is rather complex, 

several different solvers are used in the optimization function. Which solver to use is highly 

dependent on the problem formulation. If the problem is stated as a linear programming (LP) 

problem, a more straightforward solver can be used, which reduces the accuracy of the model. 

If the problem, on the other hand, is stated as a mixed integer non-linear programming 

(MINLP) problem, the model can be more accurate but demands a more advanced solver.   

To validate the model, a sensitivity analysis is made. The sensitivity analysis is performed by 

changing the input data and observe the result to control if it behaves in a correct and 

anticipated way. The different input data are related to different scenarios. The scenarios vary 

in heat demand and production status of the pulp and paper industry. 

The optimized production process uses cheaper production units as a base load, and when the 

heat demand is low, the heat storage tank charges. When the heat demand is increased, the 

tank discharges to avoid starting the more expensive backup plants if possible. When 

comparing the simulation with and without heat storage, the simulation, including heat 

storage has a lower cost. 
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When the model is compared to the previous model used at Bomhus Energi AB, the result 

shows that for a specific scenario, the savings are around 400 000 SEK, both for the LP-model 

and the MINLP-model. 

It is primarily the use of the backup units that differs between the linear and the non-linear 

approach. Which make the result of the linear and the non-linear model the same when the 

heating demand is low. Since the non-linear problem can be solved as a linear problem. The 

variation in run time for the simulation is rather significant between the two approaches, 

specifically when the demand is high. It can range from a couple of seconds for the linear solver 

to above 1 000 seconds for the non-linear solver.   

The work concludes that the linear model is a more practical tool for the customer while being 

a bit less realistic when it comes to the result. The new model is an improvement from the old 

and helps to avoid unnecessary costs. 
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NOMENCLATURE 

Denotation Description Unit 

P Power Watt [W] 

Q Heat Watt [W] 

t Temperature Celsius [°C] 

η Efficiency Percent [%] 

i Timestep Hour [h] 

ABBREVIATIONS 

Abbreviation Description 

BEAB Bomhus Energi AB 

CHP Combined heat and power 

Evap Evaporator 

FGC Flue gas condenser 

GEAB Gävle Energi AB 

HWB Hot water boiler 

HWC Hot water condenser 

IP Integer programming 

J Johannes combined heat and power plant 

LP Linear programming 

MILP Mixed integer linear programming 

MINLP Mixed integer non-linear programming 

MIP Mixed integer programming 

WH Waste heat from the recovery boilers 
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DEFINITIONS 

Definition Description 

A Inequality constraints matrix 

Aeq Equality constraints matrix 

B Inequality constraints vector 

Beq Equality constraints vector 

Black liquor Black liquor is a waste product from digesting 
pulpwood, from the process of producing paper pulp. 

fT Transposed objective 

Kraftliner Paperboard made from virgin pulp 

lb Lower bound vector 

Load 
shedding 

Store heat when the demand is low, utilize stored heat 
through discharging when the demand is high.  

Scenario I Big operation problems with the industry, going into a 
period with cold weather. 

Scenario II Big operation problems with the industry, going into a 
period with warmer weather.  

Scenario III Regular operation, significant variations in 
temperature during night and day. Temperatures are 
below 0°. 

Scenario IV Regular operation, warm weather. 

Scenario V Regular operation, significant variation in temperature 
during night and day. Temperatures are above 0°. 

SOS Special ordered set,   

Thermal 
stratification 

Keep the stored water layered by temperature, warm 
water in the top and cold water in the bottom. 

ub Upper bound vector 

x Decision variable 
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1 INTRODUCTION 

The rising awareness about human-caused emissions and its effects on the environment and 

human health has led to investment towards a more environmentally friendly energy system 

(Karaoğlan & Durukan, 2016).  

Energy systems with a high portion of renewable energy from wind and solar power can suffer 

from fluctuations due to cloudy weather or weak winds. The variations also affect the electricity 

price. (Pappala, Erlich, Rohrig, & Dobschinski, 2009; Garcia-Gonzales, Moraga.R, Santos.M, 

& Gonzales.M, 2008)  

To eliminate the fluctuations in the grid, combined heat, and power (CHP) plants, together 

with a heat storage unit, is a practical solution. The heat and power production of a CHP-plant 

can easily be regulated to match the fluctuations in the grid. (Mueller, Tuth, Fischer, Wille-

Haussmann, & Wittwer, 2013)   

A high electricity production provides a high production of heat that could exceed the heat 

demand. With a heat storage unit, the heat surplus can be stored, and therefore, also maintain 

a high total efficiency, which characterizes a CHP-plant (Abdollahi, Wang, Rinne, & Lahdelma, 

2014). CHP-plants can use biofuels to be more environmentally friendly than it would be using 

fossil-based fuels. A deregulated electricity market, which is existing in Sweden, makes the 

electricity production competitive and leads to a more volatile price (Swedish Competition 

Authority, 1996). Due to this, dynamical decision tools are essential to cover the heat demand 

while maximizing the profits.  

Today most of the long-term contracts have been replaced by short-term contracts. The short-

term contracts put certain requirements on the production, which must be optimized with high 

precision to be able to meet the varying electricity price while covering the heating demand 

(Energimarknadsinspektionen, 2015). To get the future heating demands, prognostication of 

the weather must be made since the demand for heat is entirely dependent on the weather. 

However, the weather forecasts for long periods are rarely as accurate as they need to be 

(Monache.D, 2010). Because of this, the prognostication must be valid and needs to be updated 

continuously to get the best possible accuracy.  

In this degree project, a premade prognostication model is used to help improve the current 

production optimization tool where the heat storage unit is not considered. The district heating 

system to optimized is located in Gävle, Sweden, where Gävle Energi AB owns the district 

heating grid. 

1.1 Gävle Energi AB 

The population size of the municipality of Gävle is around 100 000 (SCB, 2019) which makes 

it the 17th biggest municipality in Sweden, based on the population size. From the Gavle creek 

that runs through Gävle, there are seven hydropower plants with the purpose to produce power 
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to Sweden’s national grid. During a normal year, the power produced from these hydropower 

plants is 56 GWh. (Gävle Energi, 2019) In addition to these hydropower plants, there are two 

combined heat and power plants (Bomhus & Johannes), two heat only plants (Carlsborg & 

Ersbo) and a pulp and paper industry (BillerudKorsnäs) where heat is recovered from various 

processes to the district heating grid. These facilities supply Gävle with heat during the entire 

year. The base load for heat production is the waste heat from the industry, BillerudKorsnäs, 

and when this is not enough to cover the demand the CHP-plants can help to meet the demand 

(Gävle Energi, 2019). Johannes CHP-plant has a production capacity of 23 MW power and 77 

MW heat with flue gas condensing included. (Bomhus Energi, 2019) The fuel used in Johannes 

is biofuel, consisting mainly of bark and recycled wood (Gävle Energi, 2019). A heat storage 

unit is also present at Johannes, which creates the possibility to store heat for later, increasing 

the flexibility of the CHP-plant. The storage unit can divert a part of the incoming district 

heating flow, heat it and then send it to the outgoing water in the district heating grid, where 

it is mixed with the water heated in the condenser at Johannes. During the coldest days or 

when the primary facilities are not available two back-up heat plants, Ersbo and Carlsborg can 

be used to meet the heating demand.  Both back-up plants use bio-oil as their fuel. Ersbo has 

a capacity of 80 MW and Carlsborg 60 MW. (Bomhus Energi, 2019) 

1.2 Bomhus Energi AB 

Bomhus Energi AB (BEAB) was founded in 2010 as a result of a cooperation between the 

municipality owned Gävle Energi AB and the paper industry BillerudKorsnäs AB. Both parties 

own 50% each of BEAB. The CHP-plant is located in the same area as the paper industry. Gävle 

Energi AB and BillerudKorsnäs AB decided not to build one boiler each but instead build a 

conventional boiler which became BEAB with the purpose to secure the steam production 

needed for the paper industry, the sawmill located nearby, and supply heat to the district 

heating grid when possible and needed. The industries require steam at two pressure levels, 4 

and 12 bar. (Bomhus Energi, 2014) BillerudKorsnäs produce single-use portion liquid 

packaging’s, and white top kraftliner. Kraftliner is a paper product that is used in the outermost 

layer of corrugated fiberboard (Skogen, n.a.). The total production is 740 000 tons every year. 

(BillerudKorsnäs, 2019) The business is competitive and requires a high-quality product, 

making it important to deliver the steam it needs (Confederation of European paper industries, 

2006; Karikallio, Mäki-Fränti, & Suhonen, 2011). Electricity is also produced from Bomhus 

but is seen as a co-product to increase the total efficiency since the produced heat is the primary 

product. The CHP-side consists of a biofueled boiler and a turbine from Siemens. The turbine 

has a nominal power of 92 MW, and maximum heat production from the condenser is 150 MW 

with flue gas condensing not included. The primary fuel used for the boiler is bark. (Bomhus 

Energi, 2019) 

Besides the bio-fueled boiler, there are two recovery boilers and two electrical boilers that can 

produce steam. The recovery boilers are a part of the paper industry and help the chemical 

cycle by recovering chemicals from the black liquor which is a waste from digesting pulpwood, 

by combusting the organic substances that comes from the wood chips in the treatment process 
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(Bomhus Energi, 2019). Another process where heat is recovered is from the black liquor 

evaporators. After the black liquor has been separated from the pulp fiber from the digesters 

and pulp wash, the black liquor contains too much water to be used as fuel in the recovery 

boilers (Bomhus Energi, 2019). Bergsten (2015) describes the process as the following, to 

decrease the moisture level of the black liquor, a series of evaporators is used. These 

evaporators are called effect stages. One effect stage is made up of one or more evaporators 

operating with the same pressure level. The most common approach is to use subatmospheric 

pressure, this to make the evaporation process easier, the further it gets.  In the first effect stage 

steam is used to evaporate the moisture in the black liquor, then the steam is directed away, 

and its heat is recovered to the district heating grid. The next effect steps use the evaporated 

black liquor as the hot fluid. Therefore, a lower pressure is required in the other effect stages. 

A higher number of stages require a lower amount of steam compared to a lower number of 

effect stages. The sub-atmospheric pressure is created by a condenser that cools the liquor 

vapor in the last effect step. Figure 1 illustrates an example of three effect stages. From the 

condenser that chills the liquor vapor medium temperate water is produced. For the highly 

contaminated liquor condensate, a large portion of combustible organic material that can be 

separated from the water using a distillation process, this is done in a stripping column.  

 

Figure 1 Black liquor evaporator with three effect stages  

The electric boilers have a total production capacity of 80 MW, and its primary purpose is to 

be used as a backup when needed but, it can also be one of the more cost-effective ways to 

produce steam when the electricity is cheap. The paper industry also has an oil-fired backup 

boiler with a capacity of 110 MW. In the system, there is a steam accumulator that can store 

excess steam that can be used for the industry or to cover the heating demand for the district 

heating grid. Figure 2 shows an overview of the system described in this section. (Bomhus 

Energi, 2019) 
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Figure 2 Simplified block scheme of steam production for the district heating grid and 

industries  

1.3 Purpose 

The purpose of the project is to develop a process model that can, from a prognosticated heat 

demand, provide guidance and decision support of how the facilities should be operated to 

provide the best possible economic outcome, in terms of minimizing the production cost which 

involves revenues from sold electricity. Which also includes the heat storage unit as well, when 

to charge it and when to discharge it.  

1.4 Research questions 

• How should the heat storage unit in Johannes be operated, in terms of charging and 

discharging, to get the best economic outcome while meeting the heat demand during 

the simulation period of 3 days? 

• What is the optimal mix of boiler loads to meet the heat demand and gives the lowest 

production cost and highest profit? 
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1.5 Delimitations 

The power production from the CHP-plants is not researched since the heat production is the 

main product, and the electricity is seen as a by-product.  Forecasting of the heat demand and 

electricity price is already developed by Gävle Energi and is not studied. The simulated period 

is delimited to 3 days since the heat demand forecast is based on the weather forecast. In order 

to meet the heating demand, a specific feed temperature should be required. However, in this 

study, only the needed energy is observed. Some delimitations in costs for additional software 

are taken into consideration.  Due to the end model being developed for a customer, the choice 

of software must be accepted by the end user and be within a reasonable price. 

1.6 Contribution to current research 

The contribution of this degree project is to provide a simulation model related to the district 

heating grid in Gävle. The modeling methodologies that are described in the literature study 

are not immediately suitable for the problem related to this degree project, in terms of planning 

period and number of production units. Therefore, a new approach is undertaken to solve the 

problem for this specific district heating grid.       
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2 METHOD 

In this section, is the methodology about the gathering of data and the simulation model 

explained.   

2.1 Gathering of data 

A comprehensive literature study was made in order to get a better understanding of the 

problem as well as finding different methods to solve the problem. Most of the information 

about suitable approaches to solve the problem is gathered from similar research projects and 

scientific papers found in the databases Google Scholar, Research Gate, and Science Direct. 

The general information about energy storage and basic mathematics is gathered from books. 

In order to find relevant scientific papers, some specific search parameters were used, knowing 

it is a widely used term in the problem area. Unit commitment, economic dispatch, short-term 

planning of district heating, and cogeneration are some phrases that were used commonly to 

find information. After searching for information, some names were seen a lot in different 

papers handling the same issues, giving the impression they have had a significant influence 

on the industry. More papers were found by using the frequently appearing names. 

A study visit to the different facilities was made to gain a better understanding of the 

production units and the distribution system. Relevant input data about the various 

production units were gathered during a meeting with the process engineers at 

BillerudKorsnäs AB, Gävle Energi AB, and Bomhus Energi AB. The collected data have a 

central role in the development of the model.  

2.2 Modeling and simulation 

The model was created with MATLAB. The base model runs the main script which reads the 

input data including the prediction of the district heating demand and electricity market price 

from an excel file, then it calls on functions for all production units and one optimization 

function, the process is explained in Figure 3 below. Since the problem is rather complex, 

several different solvers are used in the optimization function. Which solver to use in the 

optimization function is highly dependent on the problem formulation. If the problem is 

simplified to a linear programming (LP) problem, a more straightforward solver can be used, 

which reduces the accuracy of the model. If the problem, on the other hand, is stated as a mixed 

integer non-linear programming (MINLP) problem, the model can be more accurate, and a 

more advanced solver is needed.    
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Figure 3 Flowchart of the simulation process. 

2.3 Validation of result 

Since there is no data to compare the result with, other measures must be used to ensure that 

the result is the global optimum, and not a local. If the objective function is convex, only one 

optimum exists. Validation of the model was done by using the same approach as previous 

projects with similar scope, and by performing a sensitivity analysis. The sensitivity analysis 

was performed by changing input data and observe the result to control if it behaved the correct 

and anticipated way. 
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3 LITERATURE STUDY 

In the following chapter will the technical information relevant to this project be presented. A 

reference to Erik Dotzauers article from 1997 is used as a base for this project. This is motivated 

by that the mindset on how to simulate/operate a plant is not changed since. Therefore, the 

same constraints can be used to get a valid simulation model. Also, it is confirmed by recent 

articles using the same methodology. Chenghong, Da, Junbo, Xitian, and Qian (2015) confirms 

that a CHP plant is either operated after the electricity or heat load. In this work is it the heat 

load that decides the production, Dotzauer (1997) uses the same strategy. All images with 

references have been approved by their respective authors to be used in this work. 

3.1 Thermal storage 

According to Frederiksen and Werner (2014), large scale thermal storage is often divided into 

two methods, short-term storage, and seasonal storage. The seasonal storage method is under 

progress and is often related to thermal solar power. Short-term storage is, however, a well-

established method whose purpose is to: 

• Push the load from a period when the demand is high to a period where the demand is 

lower. 

• Reduce rapid load changes that can harm the production unit. 

• Avoid energy losses which are related to frequent start and stops of the production 

unit. 

• Increase the production of electricity when, for example, the demand for cooling is 

higher than the demand for heat. 

In Figure 4, the load shedding for a district heating system presented. The storage tank 

discharges when the heating demand is higher than the available heat production. 
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Figure 4 Load shedding of a district heating system (Frederiksen & Werner, 2014) 

In a district heating system is the most common method for thermal storage, the short-term 

storage method which bases on thermal stratification. Thermal stratification occurs when the 

temperature of the water increases which decreases the density of the water, which in turn 

makes the mass of hot water lay on top of the mass of cold water (Frederiksen & Werner, 2014). 

In order to avoid stratification degradation and to improve the storage cycle performance must 

the injection, recovery, and holding of heat be managed carefully (Dincer & Rosen, 2012).   

Figure 5 which according to Frederiksen and Werner (2014) explains a pressureless hot water 

storage tank (1) which is connected to a district heating grid. The storage tank is connected in 

series with a combined heat and power plant (12) and a backup boiler (13). In the figure, two 

parallel circuits are presented, in order to charge the tank, open the charging valve (6) and start 

up the charging pump (3). To discharge the tank, open the discharge valve (4) and start the 

discharging pump (4). The water level in the tank remains stable by the circuit including a 

pump (10) and a valve (11), when the water level is to low the pump startup and pump water 

from the reservoir tank (9), and when the water level is too high the valve is opened in order to 

transport water to the reservoir.  
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Figure 5 Pressureless heat storage tank connected to a district heating grid. (Frederiksen & 

Werner, 2014) 

3.2 Optimization of a CHP-plant with a heat storage unit 

When planning district heating production, it is critical that there is a time perspective 

considered, especially if there is a heat storage unit involved. According to Dotzauer (1997), 

the time perspective can be divided into three levels, long-, medium-, and short-term 

production planning. The long-term planning involves decisions about future investments, 

including production capacities and expanding the district heating grid in a coming period of 

5-25 years. Medium-term planning handles fuel and electricity contracts in the next coming 1-

5 years. Short-term planning is about finding the optimal operation conditions for the facilities 

in a period from 1 – 7 days. (Dotzauer, 1997; Salgado & Pedrero, 2008) Commonly it is divided 

into subproblem for each production unit, and to increase the accuracy of the planning the 

period to be solved should be for the upcoming 24 hours (Dotzauer, 1997). Frederiksen and 

Werner (2014) describe the benefits of short-term planning as is it giving lower marginals for 

fuel consumption and a higher precision electricity production of a CHP-plant. Today the 

market for electricity requires that all producers of power must report their planned 

production for the next coming day. This helps to balance the supply and demand. 

(Frederiksen & Werner, 2014) It is crucial that the unit is being operated in an optimal 

condition in order to reduce cost, especially plants where the production cost is high (Dotzauer, 

1997; Frederiksen & Werner, 2014), for example, oil-fired boilers. For a plant with a high 

production cost, a lot of money can be saved daily (Dotzauer, 1997). The optimal operating 

conditions also help to reduce unwanted emissions, which also help reduce costs. With an 

increasing number of production units and heat storage units, the complexity and difficulty to 
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find the optimal operating conditions also increase rapidly. From Erik Dotzauers (1997) 

analysis for optimal operation, the below-described aspects are what complicates the problem 

and must be taken into consideration. 

• With several production units, it can be hard to decide which ones that should be used 

as a baseload, it limits the minimum operation- and downtimes of the plants. The 

minimum operation time is the time that the plants must be operated if started, and 

minimum downtime is the time the plant must be off if the operation is shut down.  

This must be considered because there is a start-up cost for the plants that affect the 

optimization. Dotzauer calls this problem of which unit should be operated and which 

should be off “the unit commitment problem”. The term is widely used in the sector 

and is extensively researched in its community (Pandžić & Luburić, 2019; Fossati, 

2012). 

• If any of the units that are optimized are combined heat and power plants, further 

problems appear, such as deciding the electricity production. In Sweden, the electricity 

is sold on an open market, Nord Pool (Energimarknadsbyrån, 2019), and the general 

goal is to maximize electricity production when the price for electricity is high. A CHP-

plant has its highest overall efficiency at a proportional production of heat and power. 

This means that when electricity production is high, then heat production also is at 

high levels. If the produced heat exceeds the demand, problems may arise. 

• With a heat storage unit, the production flexibility increases, due to that the excess 

heat from high electricity production can be stored for later when the electricity price 

is low, and the operation wants to avoid producing a small amount of electricity and 

high amount of heat to keep the total plant efficiency high. This tactic helps to even out 

peaks of the heat demand. However, when performing the optimization, this instantly 

increases the difficulty because a highly time-dependent aspect is introduced. 

• The outline of the district heating grid has a significant influence on how the plant can 

produce heat since a high incoming temperature decreases the efficiency of a plant 

drastically, therefore it is essential that the heating grid is not connected in series but 

rather to use substations to deliver and distribute the heat. 

To solve this complex problem, a combination of mathematical models and fitting algorithms 

are required. Bellqvist and Olofsson (2012) used the software GAMS and reMIND to solve the 

problem of similar nature at Luleå Energi AB and Lulekraft. The model made in GAMS used 

mixed integer non-linear programming (MINLP) and the model in reMIND mixed integer 

linear programming (MILP). Vennström (2014) at Umeå University also used the MILP to 

solve such a problem. Dotzauer (1997) has used Matlab combined with toolboxes from 

TOMLABs NPSOL to solve a short-term planning problem. Gopalakrishnan and Kosanovic 

(2015) used a genetic algorithm to solve their operational planning of a CHP with a mixed 

integer nonlinear problem. 

To help others, Dotzauer (1997) constructed a guide to help decide which method to use, and 

it is dependent on the following characteristics: 

• Deterministic or stochastic 

• Continuous or discrete 
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• Linear or non-linear 

• Convex or non-convex 

A linear problem that has both continuous and integer variables are viewed as a MILP, and if 

the problem is non-linear with continuous and integer variables makes it a MINLP. (Klanšek, 

2014) Below a couple of methods that can be used to solved MILP and MINLP are shown 

(Dotzauer, 1997). 

• Dynamic programming 

• Heuristic methods 

• Branch and bound 

• Lagrangian relaxation 

3.3 Modeling of non-linear efficiencies 

By using non-linear efficiencies, the credibility and accuracy of an optimization increases, 

compared to constant or linear efficiencies, this because it better reflects the real efficiencies 

(Tveit, Savola, & Fogelholm, 2005). The efficiencies are highly dependent on the installed 

capacity and the load, therefore, both these variables can be seen as the main controlling 

variables for the efficiencies (Milan, Stadler, Cardoso, & Mashayekh, 2015). Dotzauer (1997) 

shows how a secondary polynomial equation can be approximated to describe non-linear 

efficiencies. This requires empirical data to be available. To get empirical data, the plant can 

be operated in an off-design mode (Savola & Keppo, 2005). Operating the plant in off-design 

mode means that different parameters are changed to see how the rest of the system is affected, 

while still meeting a production target (Kupecki, 2015). Milan et al. (2015) describe two 

methods for non-linear modeling efficiencies. Both ways use linearization of the non-linear 

curves. The first approach uses binary variables. From the efficiency curve, a matrix is created 

where different loads are connected to particular efficiencies, Table 1. 

The binary variables create classes, and every binary variable is related to a specific value in 

the matrix. When the actual load is known, the efficiency is found by finding the nearest located 

load in the matrix. This does not give the exact efficiency because interpolation between 

tabulated values does not work with the binary variables. However, it is a simple solution to 

avoid using constant efficiencies. 

Table 1 Example of efficiencies at different loads 

 Load [%] 
Installed 
capacity [MW] 

0 10 20 30 40 50 60 70 80 90 100 

η, Boiler 1 [%] 0 31 36 42 47 53 59 65 70 74 78 

η, Boiler 2 [%] 0 33 38 44 49 55 61 67 72 76 80 

The second method gives a more precise result since it allows for interpolation to be made 

between the tabulated values. Instead of using binary variables, Special-Ordered-Set (SOS) 

variables are used. SOS variables are a set of variables in consecutive order. Compared to other 
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variables, only one (SOS1) or two (SOS2) adjacent elements in the ordered set can be set to a 

non-zero value. SOS variables can be used as weighting factors in linearization methods, by 

setting its upper and lower bounds to one and zero, respectively. Using the variables as 

weighting factors, a tabulated, or an interpolated value between two loads in the table can be 

retrieved. However, SOS-variables requires a MILP-method that supports this type of variable. 

Milan et al. (2015) use the CPLEX solver in the software GAMS to perform the optimization. 

In order to find the correct boiler (row) in Table 1, SOS1 is used, and to perform the 

interpolation SOS2 is used. The most accurate way of modeling the non-linear efficiency is to 

curve fit an equation from empirical data (Savola & Keppo, 2005). 

3.4 Non-convex & non-continuous problems  

There are problems whose characteristics cannot be assumed to be convex, a problem like this 

is, for example, modeling of non-linear efficiencies (Makkonen & Lahdelma, 2005). If the 

model has non-linear efficiencies, it leads to the production mix of heat and power being non-

convex. A non-convex model also results in there being local optimums, which can be a 

problem (Chun-lung, 2007). The characteristics for a modern CHP-plant is often non-

continuous due to reasons such as backpressure production, the possibility to use different 

types of fuels and a high variety of operations modes, this in turn also makes it non-convex 

(Makkonen & Lahdelma, 2005). There are several ways to simplify this problem. One method 

is to divide the model into several convex sub-models. The sub-models are then modeled to be 

alternative components, and only one sub-area can be operated at a time (Rong & Lahdelma, 

2007), Lien and Amato (2004) call this convex decomposition. Convex decomposition is a 

common way of handling non-convex problems and helps most algorithms to perform better 

(Lien & Amato, 2004). Makkonen and Lahdelma (2005) describe an example of a CHP-plant 

with a backpressure turbine with a bypass control valve, condenser, and an additional cooling 

unit. Altogether, this creates nine specific points, Figure 6.  
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Figure 6 Example of convex sub-models, 9 points (Makkonen & Lahdelma, 2005) 

Figure 6 shows the heat produced as a function of power production, which Makkonen and 

Lahdelma (2005) explains as the following. Point 1 - 2 is the backpressure line, meaning that 

if the heat production should increase the bypass valve should be opened accordingly to get the 

wanted increase of heat, this also leads to a decreased power production due to less steam 

passing the turbine. Opening the bypass valve pushes the state towards points 8 and 9. 

However, in a reversed situation, increased power production, the current state is pushed 

downwards to point 3. This production mix lowers the total efficiency. If even more power is 

required and the cooling capacity of the condenser is not enough, the additional cooling unit is 

needed, the production state is pushed towards four to seven, and even further reduces the 

total efficiency. The total area of the graph in Figure 6 is non-convex, therefore by dividing the 

area into smaller parts it can be made convex, each area represents a sub model (Makkonen & 

Lahdelma, 2005).  

3.5 Branch and bound optimization 

According to Vanderbei (2014), many real-world problems can be modeled as linear programs 

except that some or all variables are constrained to be integers. One technique for solving 

problems described as integer programming (IP) problems or mixed integer programming 

(MIP) problems is the branch-and-bound method. The branch-and-bound method can solve a 

potentially large number of linear programming (LP) problems in its search for an optimal 

solution. The algorithm starts by ignoring the integer constraints to solve the problem and 
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hope that the solution vector satisfies the integer constraints. The hopes for this first solution 

are almost always unfulfilled, and a backup strategy is required. The backup strategy is to 

develop a tree of linear programming subproblems. Consider the following example. 

 

max 
𝑥1,𝑥2

     17𝑥1 + 12𝑥2       

𝑠. 𝑡.  10𝑥1 + 7𝑥2 ≤ 40 

              𝑥1 + 𝑥2 ≤ 5 

                   𝑥1, 𝑥2 ≥ 0 

                             𝑥1, 𝑥2  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

The linear programming problem obtained when the integer constraints are ignored, is called 

the LP-relaxation. The solution to the LP-relaxation is at (x1, x2) = (5/3, 10/3) which gives the 

optimal objective value 205/3 = 68,33. By rounding each component of this solution to the 

nearest integer gives (x1, x2) = (2, 3), which is not feasible. The closest feasible integer solution 

to the LP-relaxation is (x1, x2) = (1, 3) which is not the optimal solution. As mentioned, x1 for 

the LP-relaxation problem is 5/3. Therefore, the optimal solution to the integer problem 

satisfies either x1 ≤ 1 or x1 ≥ 2. Let P1 denote x1 ≤ 1 and P2 denote x1 ≥ 2. A tree of LP subproblems 

can now be made as in Figure 7 below, this is called the enumeration tree. The algorithm 

explores branches of the tree, and every branch is checked against an upper and lower bound, 

hence the name Branch-and-Bound.  

 

Figure 7 Enumeration tree related to the example. (Vanderbei, 2014) 

By adding the x1 ≤ 1 constraint to the LP-relaxation P1 is achieved. Since the solution to P1 is an 

integer, it is said to be the best-so-far solution. However, since the solution to P2 is higher than 
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the one for P1, the procedure must continue. The process is moving on until the last step where 

two integer solution is achieved, which is in P7 and P8 where P8 is highest and said to be the 

optimum. P7 must not be an integer but to stop the procedure, should it be lower than P8. 

According to Leyffer (1999), the same methodology can be used for solving mixed integer 

nonlinear programming (MINLP) problems. All integer constraints are relaxed, and the 

resulting nonlinear programming problem is solved. If the solution is an integer solution, the 

algorithm stops. If not, the algorithm continues by creating an enumeration tree with branches 

that are checked against lower and upper bounds. The branch and bound algorithm is a global 

optimization method and Ratschek and Rokne (1995) describes it as almost being a brute 

search for the optimum, and therefore almost guaranteeing that it is a global optimum, 

however, due to its brute search characteristic it is time-consuming and exponential.  

The branch and bound algorithm have been used by others to solve similar production 

problems, for example, Lahdelma (2006) uses an envelope-based branch and bound algorithm 

to solve a production planning problem with non-convex characteristics with success. The 

problem was defined as a mixed integer linear problem. 

 

 

     

       



   

 

23 

4 MODELING 

The following chapter describes the process of how the models are constructed and the 

methods used to gain the best result in terms of accuracy, time, and complexity of the 

optimization. To contribute with a new approach, the branch and bound based Matlab toolbox 

created by Kenneth Holmström called TOMLAB is used to perform the optimization. TOMLAB 

was used by Dotzauer (1997) but with the dynamic optimization method. 

4.1 Existing model 

The currently used model that is to be improved is done in Excel and was developed by Håkan 

Yderling at BillerudKorsnäs. It is based on the mentioned heat demand forecast, electricity 

price forecast model, and production planning for the industry, how much is expected to be 

produced. The equations used for efficiencies, district heating return temperature, operational 

costs are curve fitted to give the most accurate result. The basic structure of this model is to 

create two lists, one that shows how much production each unit can produce in the specific 

hours, and the other with the particular costs during that hour. From this, a priority list can be 

made, and then the cheapest ones during each hour are operated to get the lowest possible 

costs while meeting the heating demand.  The way the heat storage tank is operated is to 

compare how much it would cost to store 1 MW of heat, and how much would be saved by 

discharging 1 MW of heat and then calculates a marginal cost. This is not optimal cause it does 

not consider the time aspect as it should. 

4.2 Current model 

From meetings with Gävle Energi, Bomhus Energi and BillerudKorsnäs performance 

requirements were collected to help develop the model in a way that satisfies all three actors. 

From dialogs with Håkan Yderling, the process engineer, at BillerudKorsnäs, it was decided to 

use the same curve fitted equations as in the existing model. This because they are accurate, 

and making new equations using the curve fit method would give similar results. Hence it is 

unnecessary. It was said that there are close to no startup costs for any of the production unit, 

same with the heat losses for the storage unit, and therefore, not be considered in the 

optimization done in the project. When deciding which software to construct the model in, an 

economic aspect must be considered, since the customer should approve of purchasing it. 

Gävle Energi already has a Matlab license but in order to do the optimization either the 

MATLAB optimization toolbox or the external TOMLAB toolbox is required. The Matlab 

optimization toolbox costs 11.700 SEK. TOMLAB has a base cost of 1.250 USD, and the MINLP 

solver cost 2.540 USD, making it a total of 35 064 SEK (TOMLAB, 2019) using the currency 

rate 9.25 (11th April 2019) (Xe, 2019). This shows that different solvers come at a large variety 

of costs. However, to find out which method and approach that gives the best and most 

accurate real-life operation result at a reasonable time, both approaches are modeled. 
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4.3 Matlab 

The section below describes the different methods used and experimented with to get a result 

fitted for the customer. 

4.3.1 Linprog 

Linprog is a function included in the Matlab optimization toolbox. It is used for solving linear 

programming problems. There is also a function called intlinprog, which is similar, but it 

allows for integers to be used. However, if integers are to be used, the solver would be required 

to solve a non-linear problem which it cannot (MathWorks, 2019). 

4.3.2 TOMLAB 

TOMLAB is developed for a general purpose of development and modeling in Matlab for 

research, teaching, and practical uses. TOMLAB is created by Kenneth Holmström and is used 

by several large companies and universities all over the world such as ABB, US Air Force 

Control Lab, IBM Watson Research Center, NASA, and more. Holmström decided to create 

TOMLAB because he saw a lack of advanced, robust, and reliable tools for optimization 

algorithms. Using TOMLABs state-of-the-art optimization software Matlab can be used to 

solve the complex optimization problems that otherwise would be difficult (TOMLAB, 2019).  

4.3.2.1. MinlpBB 

MinlpBB solves problems of MINLP type by using the branch-and-bound method. It can be 

used for large, sparse or dense mixed-integer linear, quadratic, and non-linear programming 

problems. For the optimization to work the second order information from the nonlinear 

constraints and objective function are required (TOMLAB, 2019).  

4.4 Model characteristics 

As mentioned above, the simulation model is built in MATLAB by using different types of 

solvers. The problem formulation is different for each solver. The general approach of the 

model is that it first collects data from an input file in the form of an excel spreadsheet. From 

the gathered data, it first calculates the availability of each unit to control that the unit can be 

used to produce heat, it could be that there is scheduled maintenance or an unexpected 

problem that appeared. From the availability, the available energy is calculated, which is how 

much energy each unit can produce, which then is used to calculate the available production. 

The available production is what decides how much each unit realistically can produce each 

timestep.  
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Before the optimization can start, the production prices for all units and timesteps need to be 

calculated. The evaporators for the black liquor have three sets of which heat can be extracted. 

However, when performing the modeling, it is only divided into two variables, where its total 

available production is 40 MW. It is set to two variables only because there are two different 

production costs for the evaporators. All production over a specific limit of power costs more. 

The cost for extracting heat from the black liquor evaporators are dependent on two equations, 

for the first variable. The cost for the flue gas condenser and steam of 4 bar decides the 

production costs for the first equation and the second is dependent on the electricity price. The 

equations are curve fitted, and the lowest cost calculated from the equations is what becomes 

the price, this is applied to all the cost equation. Therefore, only the dependent factors are 

described. The cost for the second evaporator variable is dependent on the cost for the first 

variable. 

For the solid fuel to BEAB’s bio-fired boiler to be used as heat in the hot water condenser the 

cost is calculated from the cost to produce steam with the pressure of 4 bar and the cost for the 

flue gas condenser. The cost for the steam of 4 bar is derived from the boiler efficiency, 

electricity price, fuel cost, electricity certificate, and cost for producing steam of 120 bar. The 

efficiency of the boiler is dependent on the load. Operational cost for the electric boiler is 

calculated from the cost of heat from solid fuel.  The cost for the excess steam which is stored 

in the steam accumulator is set to a specific and constant price. The same is done for the waste 

heat, flue gas condenser, and all backup units.  

For Johannes, the approach is a little bit different because it has been split into four 

components with a convex characteristic due to it being non-convex with the backpressure 

functionality. The four convex sub-models are the minimum load, turbine condenser and flue 

gas condenser, direct condenser, and flue gas condenser, and only direct condenser. The 

efficiency for Johannes is modeled as constant, due to lack of data. To make sure the minimum 

load is always operating its cost is set to be zero. Direct condensing happens when the turbine 

is skipped in cases where the heat demand is high. The cost for the turbine and flue gas 

condenser is calculated from the fuel price, electricity price, and electricity certificate, and the 

same is for the direct and flue gas condenser. The cost for only direct condensing is derived 

from the electricity and electricity certificate price, due to that, the heat that is produced must 

cover the income from not producing electricity. The turbine condenser can be operated at the 

same time as the direct condenser. Hence, only a part of the flow is extracted before the turbine. 

4.4.1 Linear programming 

When using the solver “linprog”, the problem must be formulated as a linear programming 

problem as following: 

min
𝑥

          𝑐𝑇𝑥          (1) 

𝑠. 𝑡.    𝐴𝑥 ≤ 𝑏          (2) 

              𝑥 ≥ 0         (3) 
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Where function (1) is a linear function of x which is a vector of all decision variables, the 

objective is to minimize the function value. Therefore, it is called the objective function. 

Function (2) and (3) are the constraints related to the objective function. The constraints are 

either equality constraints or inequality constraints, associated with some linear combination 

of the decision variable. (Vanderbei, 2014)    

When using linear programming to solve the problem is stated as the following: 

min
𝑥

          𝑓𝑇𝑥          (4) 

𝑠. 𝑡.     𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞   (5) 

            𝐴𝑥 < 𝑏        (6) 

     𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏     (7) 

Where x is the vector including all decision variables associated with the storage tank, heat 

demand and all production units as: 

𝑥 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑄𝑠𝑡𝑎𝑟𝑡

𝑄𝑠𝑡𝑜𝑟𝑒𝑑

𝑃𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑃𝑑𝑒𝑚𝑎𝑛𝑑

𝑃𝐽.𝐷𝐶,𝐹𝐺𝐶 

𝑃𝐽.𝑇𝐶,𝐹𝐺𝐶 

𝑃𝐽.𝐷𝐶 

𝑃𝐽.𝑚𝑖𝑛 

𝑃𝑊𝐻

𝑃𝐸𝑣𝑎𝑝 1

𝑃𝐸𝑣𝑎𝑝 2

𝑃𝐻𝑊𝐵

𝑃𝐶𝑎𝑟𝑙𝑠𝑏𝑜𝑟𝑔

𝑃𝐸𝑟𝑠𝑏𝑜

𝑃𝐹𝐺𝐶 𝐵𝐸𝐴𝐵

𝑃𝐻𝑊𝐶 𝐷

𝑃𝐻𝑊𝐶 𝐹

𝑃𝐻𝑊𝐶 𝐸  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The vector f is the vector in which all operational costs associated with the productions are 

included. There are no operational costs related to storage and heat demand. Therefore, the 

elements in the first four rows are set to zero. The equality constraints are represented by the 

general equations 8 - 9: 

𝑄𝑠𝑡𝑜𝑟𝑒𝑑(𝑖 − 1) + 𝑃𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑖) = 𝑄𝑠𝑡𝑜𝑟𝑒𝑑(𝑖)     (8) 

∑𝑃𝐽𝑜ℎ𝑎𝑛𝑛𝑒𝑠 (𝑖) − 𝑃𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑖) + 𝑃𝑊𝐻(𝑖) + ∑𝑃𝐸𝑣𝑎𝑝(𝑖) + 𝑃𝐻𝑊𝐵(𝑖) + 𝑃𝐶𝑎𝑟𝑙𝑠𝑏𝑜𝑟𝑔(𝑖)

+ 𝑃𝐸𝑟𝑠𝑏𝑜(𝑖) + ∑𝑃𝐻𝑊𝐶 (𝑖)  = 𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑖)     (9) 
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∑𝑃𝐽𝑜ℎ𝑎𝑛𝑛𝑒𝑠 (𝑖) = 𝑃𝐽.𝐷𝐶,𝐹𝐺𝐶
(𝑖) + 𝑃𝐽.𝑇𝐶,𝐹𝐺𝐶

(𝑖) + 𝑃𝐽.𝐷𝐶
(𝑖) + 𝑃𝐽.𝑚𝑖𝑛

(𝑖)     

𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 

The general equations for the equality constraint used to form a matrix which is necessary to 

cover all timesteps in the simulation. A simplified equality matrix is presented below. 

𝐴𝑒𝑞 =

[
 
 
 
 
 1
0
0
0
0
0

|
|
|
|
|
|

−1 0 0
1 −1 0
0
0
0
0

1
0
0
0

−1
0
0
0

|
|
|
|
|
|

1 0 0
0 1 0
0

−1
0
0

0
0

−1
0

1
0
0

−1

|
|
|
|
|
|

−1 0 0
0 −1 0
0
1
0
0

0
0
1
0

−1
0
0
1

|
|
|
|
|
|

0 0 0
0 0 0
0
1
0
0

0
0
1
0

0
0
0
1

|
|
|
|
|
|

0 0 0
0 0 0
0

−1
0
0

0
0

−1
0

0
0
0

−1]
 
 
 
 
 

 

The matrix is based on three timesteps and is divided into six sections by the dashed lines in 

red. The first section represents the start value of the energy stored in the tank, and it consists 

of only one column since the start value is related to the first timestep. Section two represents 

the stored energy in the tank, the storage in timestep i, in equation 8 is moved from the right-

hand side to the left-hand side and therefore set as negative, the stored energy in the previous 

timestep is set as positive. Section three represents the charging, which is positive in the 

storage constraint and negative in the demand constraint. In the fourth section is the 

discharging represented, which is negative in the storage constraint and positive in the demand 

constraint. The fifth section represents the production, which is not used in the storage 

constraint and therefore, set to zero. In the demand constraint is the production set as positive. 

The sixth and final section represents the demand which is moved from the right-hand side to 

the left-hand side in the demand constraint and therefore set as negative. Since the variables 

on the right-hand side are moved to the left-hand side for both the storage constraint and the 

demand constraint is the equality vector set as the zero vector as: 

𝑏𝑒𝑞 =

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

 

The inequality constraints are used to make sure that heat produced from a specific producer 

charges the tank. This is not a problem when discharging the heat storage, equation 10. 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑖) ≤ ∑𝑃𝐽𝑜ℎ𝑎𝑛𝑛𝑒𝑠 (𝑖) (10) 

The inequality matrix is based on the same concept as the equality matrix. It is crucial that the 

number of columns is the same and that the sections agree. The inequality vector is set to the 

zero vector since the right-hand side is moved over to the left-hand side.  

The matrixes that represent the lower and upper bound is made for each decision variable. 

Since the demand is known in every timestep is the lower and upper bound set to the demand. 

The lower and upper bound for the charging and discharging is set to 0 MW and 40 MW 
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respectively. The lower and upper bound of the storage tank is set to 50 MW and 350 MW. The 

upper bound for each production unit is set to its maximum load, the lower bound must be set 

to 0 MW in order to avoid a production unit to produce its minimal load when it is turned off. 

This is a simplification of the problem since in the real world a production unit cannot produce 

in the range between zero and the minimal load. To make the model support the minimal load, 

another binary variable must be implemented. However, this makes the problem non-linear 

and therefore, is not taken into consideration for the simplified linear problem. The same 

occurs if a minimum operating or downtime is introduced. 

A way to make the result smoother without the loads going from low to high or reversed, 

ramping functions are used to create a limitation to how much the load can be increased or 

decreased between every timestep. The constraint is shown in equation 11.  

𝑃𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 ≤ 𝑃(𝑖) − 𝑃(𝑖 − 1) ≤ 𝑃𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 (11) 

This constraint is only implemented for the backup units, Carlsborg, Ersbo, and HVP since the 

other loads are more flexible in terms of changes to the operating load.  

Logically the optimization tries to empty the remaining energy in the heat storage unit at the 

end of the simulation. To avoid draining the tank in the end, a function that calculates the 

average heat demand in the six last hours is used to decide how much energy should be stored 

at the end of the simulation. This was brought up by the operating personnel at Gävle Energi. 

For an average heat demand of 200 MW, the stored energy should be at least 200 MWh, and 

170 MWh for an average between 150 and 200 MW. A set of threshold values is used to control 

the stored energy at the tank at the end, in order to avoid emptying it at the end of the 

simulation. The threshold values are compared to the average heat demand of the last six hours 

and decide what the minimum allowed stored energy would be at the end of the simulation. To 

see how to implement the specifics mentioned in this chapter into Matlab, see Appendix 1. 

4.4.2 Mixed-integer non-linear programming  

By expanding the set of decision variables by introducing integer variables in order to turn on 

and turn off the production units allowing for minimum production levels, minimum operating 

and down times, the problem is turned into a mixed-integer non-linear programming problem. 

The constraints in the linear problem are similar to the ones used in the MINLP. The decision 

variable then becomes the vector below. Binary decision variables are only required for the 

production units, which have a minimum load and/or a minimum operating time and 

minimum downtime. Because of Johannes already being divided into sub-models, of which 

one is for the minimum load it does not require an on/off variable to describe its status. 
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𝑥 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑄𝑠𝑡𝑎𝑟𝑡

𝑄𝑠𝑡𝑜𝑟𝑒𝑑

𝑃𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑃𝑑𝑒𝑚𝑎𝑛𝑑

𝑃𝐽𝐷𝑐,𝐹𝐺𝐶 

𝑃𝐽𝑇𝐶,𝐹𝐺𝐶 

𝑃𝐽𝐷𝐶 

𝑃𝐽𝑚𝑖𝑛 

𝑃𝑊𝐻

𝑃𝐸𝑣𝑎𝑝 1

𝑃𝐸𝑣𝑎𝑝 2

𝑃𝐻𝑊𝐵

𝑃𝐶𝑎𝑟𝑙𝑠𝑏𝑜𝑟𝑔

𝑃𝐸𝑟𝑠𝑏𝑜

𝑃 𝐹𝐺𝐶 𝐵𝑒𝑎𝑏

𝑃𝐻𝑊𝐶 𝐷

𝑃𝐻𝑊𝐶 𝐹

𝑃𝐻𝑊𝐶 𝐸  
𝑇𝐽𝑜ℎ𝑎𝑛𝑛𝑒𝑠

𝑇𝐶𝑎𝑟𝑙𝑠𝑏𝑜𝑟𝑔

𝑇𝐸𝑟𝑠𝑏𝑜

𝑇𝐻𝑊𝐵 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The non-linear equality constraint now becomes as equation 12. Constraints that affect 

production units which do not have a binary variable connected to it remains the same. 

𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑖) = 𝑃𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑐ℎ𝑎𝑟𝑔𝑒(𝑖) + ∑𝑃𝐽𝑜ℎ𝑎𝑛𝑛𝑒𝑠 (𝑖) ∗ 𝑇𝐽𝑜ℎ𝑎𝑛𝑛𝑒𝑠(𝑖) + 𝑃𝑊𝐻(𝑖) + ∑𝑃𝐸𝑣𝑎𝑝(𝑖)

+ 𝑃𝐻𝑊𝐵(𝑖) ∗ 𝑇𝐻𝑊𝐵(𝑖) + 𝑃𝐶𝑎𝑟𝑙𝑠𝑏𝑜𝑟𝑔(𝑖) ∗ 𝑇𝐶𝑎𝑟𝑙𝑠𝑏𝑜𝑟𝑔(𝑖) + 𝑃𝐸𝑟𝑠𝑏𝑜(𝑖) ∗ 𝑇𝐸𝑟𝑠𝑏𝑜(𝑖)

+ ∑𝑃𝐻𝑊𝐶 (𝑖) (12) 

It is no coincident that the backup plants are the ones who require binary variables to control 

their minimum operating time because they are the plants that most often would be required 

to be operating for just a quick moment when the heat load is high. In real life, operating a 

plant for only one hour is not a choice, and therefore, it is crucial to implement constraints to 

get a result that is reflected by realistic operating conditions. The minimum operating time is 

implemented by using a constraint, shown in equation 13. This constraint is based on problems 

that Dotzauer (2002), Zendehdel, Karimpour, and Oloomi (2008) have described, which has 

a similar objective. 

{
𝑇𝑗 − 𝑇𝑗−1 ≤ 𝑇𝑖 ,        𝑤ℎ𝑒𝑟𝑒 𝑗 = 𝑖 − 𝑡𝑚𝑖𝑛

𝑢𝑝
+ 1,… , 𝑖 − 1    (13)

𝑇𝑗−1 − 𝑇𝑗 ≤ 1 − 𝑇𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑗 = 𝑖 − 𝑡𝑚𝑖𝑛
𝑑𝑜𝑤𝑛 + 1,… , 𝑖 − 1 (14)

 

To give a better understanding of how the constraint work, it is set up as a matrix. In Gävle the 

backup units have a minimum operating time of three hours, creating the matrix, with nine 

timesteps (i = 9), displayed underneath. 
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[
 
 
 
 
 
 
 
 
   0    .       .
   .    .       .
   0    .       .

    

.     .       .

.     .      .

.     .      .
    

.      .      0

.     .     .

.     .      0
−1    1    0
   0 −1    1
   0    0 −1

−1    0    0
   0 −1    0
   1    0 −1

   
0     0     0
0     0     0
0     0     0

   0    0    0
   0    0    0
   0    0    0

−1    1    0
   0 −1    1
   0    0 −1

−1    0    0
    0 −1    0
   1    0 −1]

 
 
 
 
 
 
 
 

∗ 𝑥 ≤

|

|

|

0
0
0
0
0
0
0
0
0

|

|

|

 

The optimization code for minlp in Matlab can be seen in Appendix 2 -4, to give an example 

on how to implement this in the Matlab syntax. 

4.5 Scenarios 

Different real scenarios are tested with the two different simulation models to control that they 

work as intended independently of the input data. One scenario (Scenario I) is when the paper 

pulp industry has had some problems and therefore cannot provide the waste heat nor heat 

from the black liquor boilers during the winter period when the forecast predicts that the 

weather is going to be cold. Scenario II is similar to scenario I. Issues regarding the factory are 

present, but with warm weather predicted. Scenario III handles normal operation with no 

present issues. However, it has a large temperature difference during night and day with an 

average temperature below zero. The fourth scenario (Scenario IV) operates during normal 

conditions with warm weather. Scenario V can be compared to scenario III but with average 

temperatures being above zero. For the more complex and harder solved scenarios, the 

demand is decreased and increased to analyze how the model handles the optimization. This 

is made for the electricity price as well. All scenarios are tested with a period of 72 hours. 
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5 RESULT 

In this section results from each scenario are displayed with a time frame of three days, 72 

hours. Some of the scenarios have heat demand or electricity price increased and/or decreased. 

Figure 8 shows the scenarios where the weather is cold. From the graphs, it can be observed 

that the resulting heat production in each hour covers the particular demands (thin black line). 

When it goes below zero, the heat storage unit is being charged, and therefore, a higher total 

production must be achieved, and when it discharges, it goes on the positive side of the y-axis. 

Both scenarios use cheaper production alternatives and try to avoid using expensive backup 

plants as much as possible. Scenario I must operate the HWB for approximately 40 % of the 

total simulation period while scenario II only uses it for a couple of hours, during the peak 

demand. In both scenarios, the direct condenser is used when the demand reaches a higher 

level and stops the entire electricity production in Johannes CHP. A higher capacity for the 

discharging of the stored energy might have been able to help avoid using the HWB at all for 

scenario II. Scenario I charges the heat storage in the end due to the implemented function to 

check the average heat demand in the last six hours and depending on the mean value a certain 

energy level is required in the tank, and in this scenario, it forces the charging in the end to 

fulfill the requirement. 
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Figure 8 Minlp result for scenario I & II 
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Scenario III, IV, and V are displayed in Figure 9. The third and fourth scenario operates during 

warmer weather compared to scenario I and II and is visible through the lower heat demand. 

However, scenario V is close to scenario I and II studying the heat demand. These three 

scenarios have one thing in common, none of the backup plants are being used, which makes 

the solutions precisely the same as the result from the linear programming approach. This is 

mainly due to the lower heat demand, but also due to the better alternatives being available for 

heat production. 

Figure 9 Minlp/lp result for scenario III, IV & V 
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5.1 Linear vs. Nonlinear 

Figure 10 compares the result for scenario I, using the linear and nonlinear approach. The first 

thing that can be concluded is that the production overall is similar, with minor differences in 

the middle mainly. The guess for the nonlinear approach is the result of the linear method. By 

using the nonlinear method, a smoother and less spikey result is withheld, and in this specific 

scenario, the total cost for all production is the same, meaning that the area of the orange area 

in the two graphs is precisely the same even though being used in different ways. It is because 

of the minimum up and downtime the operations differ, in the linear method it can be turned 

off however, it wants, but not in the nonlinear method. The simulation time for the linear result 

was a couple of second (<10s) while the nonlinear took 1331 second performing 246 iterations 

to find the optimum that satisfies all constraints.  
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Figure 10 Comparison of scenario I minlp and lp result. 
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For scenario II the linear and nonlinear results differ very little, Figure 11. In the linear result, 

the HWB is only used during one hour at a load (21.4 MW) that is below the minimum allowed 

load (25 MW). It because of this, the results of the two methods differ, whenever a backup plant 

is required to cover the heat load a new set of constraints is introduced and must be satisfied. 

After approximately 40 % of the simulation period, the graphs are precisely the same due to 

the backup plants not being required.  
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Figure 11 Comparison of scenario II minlp and lp result 
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5.2 Heating Demand  

Figure 12 shows a comparison between two modified versions on scenario I and the regular in 

the middle. The modified version on the top has a 50 % increased heating demand, and the 

other version has decreased the demand by 50 %. Through comparison, the flexibility of the 

heat storage unit can be observed. The discharging pattern for all versions has some 

similarities. For example, the regular and increased versions are similar in the start and end. 

They are similar in the end due to a constraint saying there must be at least 200 MWh of energy 

stored in the tank at the end of the simulation. In the increased and decreased version, the 

discharging happening in the middle section of the period is also similar.  
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Figure 12 In/Decrease heat demand for scenario I. 
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5.3 Electricity Price  

Figure 13 shows a comparison between an increased (30 %), decreased (30 %), and regular 

electricity price for scenario I. It shows that while the electricity price is high, the CHP 

Johannes decides to maintain the electricity production for almost the entire period even 

though the heat demand is high. It is also because the price for the direct condenser must cover 

the revenue the sold electricity otherwise would provide. Which is not the case in the regular 

and decreased version. For all three versions, the total sum of heat production from the 

electrical boiler is the same. The regular and decreased versions all have the same amount of 

production for each respective unit, but still uses a different strategy when it comes to the 

Figure 13 In/Decrease electricity price for scenario I. 
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hourly operation. The only thing that differentiates the increase from the other is that the 

electricity production at Johannes CHP plant and the use of backup unit HWB. 

By comparing the total price difference in Table 2, the total cost is profoundly affected by the 

electricity price. If the scenario had a smaller heat demand, the difference in price would not 

be as significant. 

Table 2 Cost comparison scenario I different electricity prices 

 

 

The units that are affected by a change in electricity price are the black liquor evaporation, 

hot water condenser, and Johannes CHP plant. The variation in heat production prices is 

according to Figure 14. 

 

Figure 14 Comparison of production costs for different production units at different 

electricity prices. 

5.4 Storage vs. No storage 

Figure 15 shows the difference for scenario III with storage and if the system did not include a 

heat storage unit. At first, the system without storage seems to have a more even production, 

but that is not the case because the storage unit is at the bottom of the graph, and therefore 

causes all other units to follow its pattern up and down.  

x0,5 Reference price x2

Evap part 1 Evap part 2 HVC Solid fuel HVK Electric

J TC+RGK J DC+RGK J DC+RGK

Electricity price Cost [SEK] 
30% Increase 3 919 778 

Regular 3 507 734 

30% Decrease 3 070 407 
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The most interesting thing when comparing the system if it would not have heat storage 

available is how the total cost differs. Hence, the same scenario was used but with an increased 

and decreased heat demand. Table 3 shows the difference in price from the comparison. 

Table 3 Scenario III, storage vs. no storage 

Electricity price Storage [SEK] No storage 
[SEK] 

Difference [SEK] 

50% Increase 1 432 184 1 574 337 142 153 

Regular 513 619 537 487 23 868 

50% Decrease 70 855 77 279 6 424 

 

  

Figure 15 Scenario III, storage vs. no storage 
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5.5 Bomhus Energi model vs. Minlp model 

The improvements from the minlp compared to the previous constructed by Bomhus Energi 

can be observed in Figure 16 and Figure 18 (see Appendix 5). It gives a clear visualization of 

how the minlp tries to avoid using the expensive backup plants, while Bomhus model is not as 

successful in that challenge.   

Figure 16 shows that by using the heat storage smartly and efficiently, it can be completely 

avoided to start up a second backup plant, Carlsborg in this case. The minlp also takes every 

chance it can to charge the heat storage while Bomhus model does not.  
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In both Figure 16 and Figure 18, Bomhus does not seem to prioritize HWC  solid fuel but rather 

use the electrical boilers instead, this is not what the minlp model does.  The electrical boiler 

is more expensive than using a solid fuel boiler unless the electricity price is low. There is also 

a different priority on how to operate Johannes, when to not produce electricity and when to.  

Table 4 Total production, Bomhus vs. Minlp (referring to Figure 16) 

 [MWh] Bomhus  Minlp 
Waste heat 11 11 

FGC BEAB 1909 1812 

E5 0 0 

E4 0 0 

E3 0 0 

HWC Excess 0 0 

HWC Solid fuel 1136 1891 

HWC Electric 2967 3272 

HWB 2532 1593 

J. FGC 1383 1383 

J. TC 2472 1653 

J. DC 1968 2783 

Carlsborg 22 0 

Ersbo 0 0 

 

As presented in Table 4, the amount of production in different production units varies. The 

difference in production cost varies by around 400 000 SEK, according to Figure 17. 

 

Figure 17 Total production cost comparison between the Bomhus model, the Minlp model, 

and the Lp model. 
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6 DISCUSSION  

The following chapter contains an in-depth analysis of the result regarding the different 

scenarios and methods. Due to no specific validation method found for branch and bound 

optimization, the result had to be studied carefully to ensure its quality. However, Ratschek 

and Rokne (1995) describe the optimization method to always find the global optimums due 

to it being similar to a brute force search for the optimum. Meaning that it will try every result 

that satisfies the constraints and compare it to find the optimum. This comes to a downside 

since there are a lot of feasible solutions. Therefore, the time to find the optimum is highly 

dependent on the initial guess and is highly time-consuming in many cases. Lahelma (2006) 

can get the optimal solution using the branch and bound algorithm within a reasonable time. 

However, the number of units and the complexity of the constraints are not as advanced as in 

this study and therefore making it easier to find the result. In the scenarios where the same 

solution is given from the minlp and lp model, the initial guess from the lp solution was 

modified to study whether this would influence the result of the minlp solution. This 

modification did not affect the result but made a significant impact on the simulation time. 

The simulation time varies a lot depending on the heat demand and the status of the pulp and 

paper industry. The run time for a simulation can range from only a couple of seconds to 

several hours. As Dotzauer (1997) mentions, the simulation time drastically increases as the 

number of units, and time steps increase. The simulation time is also affected by the number 

of constraints, some constraints can shorten the time since it limiting the feasible operation 

zone, and some increases the complexity, making it harder to find an optimal solution 

(Dotzauer, 1997). For a scenario with a rather low heat demand, the linear programming solver 

is enough to solve the problem since there is no need to use the production units that require 

the nonlinear solver. However, the issue regarding the simulation time is not as simple as that. 

To understand why it is like that the additional constraints must be observed. Basically, in 

scenarios where the guess made from the linear solution differs a lot from the nonlinear, the 

simulation time increases a lot in many cases. Which is often related, as mentioned to scenarios 

when the heat demand is at higher levels. An example on this is when the linear programming, 

which does not have a minimum up/downtime for the backup units or load, wants to turn on 

and off these units to just top the production. The solution for this case will then not satisfy the 

constraints for the nonlinear method, and therefore, the further away the guess is, the more 

solutions must be studied to find the global optimum. Because the final product is supposed to 

be used as a decision tool, the simulation time is highly essential to ensure that the plants are 

being operated optimally. A simulation time that is 1 hour is too long because when the 

simulation is done the timeframe of the simulation might already have passed in real life, the 

maximum time that was given from Bomhus was 3- 5 minutes, which is obtained with the more 

simplistic approach, and sometimes with the minlp model. This then leads to that the actual 

operation differs at the start, and therefore, it is hard to follow the plan withheld from the 

model. Eventually, this leads to the model being unusable for the customer. 

Looking at the result, it seems to operate in an intended way, first starting the cheaper 

production units and tries to avoid using the expensive backup plants. However, the hard thing 
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to control is how the storage tank is used, and if it is done in the most cost-efficient manner. It 

is our belief that it handles it well because when studying the result, a pattern can be seen on 

how it operates, similar to what Dotzauer (1997) and Frederiksen and Werner (2014) describes 

in their studies. Whenever the demand goes up, it goes from charging to discharging, and when 

the demand goes downwards the start of the stacked graph goes below zero (charging), this is 

occurring for all scenarios. It can also be seen as the system trying to keep an even production 

rate throughout the simulation period and that the main controlling factor for the operational 

strategy is the heat demand, which seems logical. By using previously tested methods for both 

constraints and algorithms, the operation of the heat storage can certainly be assumed to have 

a better performance than the old simulation model. 

In Figure 10, it can be noticed that the turbine is being turned on and off a lot, this is not good 

since this will affect the lifetime of the turbine. This should be fixed by implementing a 

constraint similar to the ones used for the backup units regarding the minimum up- and 

downtime. In the real world, it would be preferable to instead lower the power production 

instead of shutting if of completely.  

To be sure about the heat demand as a central controlling factor, the impact of electricity price 

also must be considered. In chapter 5.3, it is made clear that the electricity price has a 

significant impact as well. The units that are dependent on the electricity price is Johannes, 

the electrical boilers (HWC Electric), solid fuel (HWC Solid fuel), and black liquor evaporators 

(Evap). At first, it is confusing why in the increased version, the system would choose to 

continue to produce power at Johannes instead of producing more heat by using the direct 

condenser, this while using the electrical boilers at maximum capability. This can be explained 

by what defines the price for the electrical boilers and the direct condenser. The price of 

operating electrical boilers is only dependent on the electricity price. The direct condenser 

must cover the revenues that would be made from having the power production, which is 

including the electricity certificate, making it a more significant factor than just the electricity 

price which the electrical boilers are dependent on. This is questionable and does not seem like 

a feasible approach. However, it is given from Bomhus, and the instruction was to use the same 

prices as the previous model. This issue does not disturb the logic of the actual optimization 

only affects the result, meaning that if it was to be changed the model itself does not need to 

change only its input. Frederiksen and Werner (2014) describes an operational strategy that 

the unit will aim to produce as much electricity as possible at high electricity market prices, 

and through this also getting a good heat production and total plant efficiency, which is what 

happens at Johannes. However, instead of producing power in scenarios where the heat 

demand is high, it is more profitable to produce heat only instead of starting a backup unit. 

In order to show the possibilities that are enabled by having heat storage and using it in a smart 

way, Table 3 is used. The scenario that was used for this result is not an extreme case where 

the demand is high, but a regular demand like many days during an entire year. It shows that 

a very small amount can be saved whenever the more expensive units can be off, and the 

cheaper alternatives can be used to provide the heat required. It also shows that much money 

can be saved during a small timeframe, in this case, 142 000 SEK, and this can elevate to 
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significant high numbers whenever the fossil-based units must help, which is not the case in 

the result. 

In order to not drain the heat storage tank in the last timestep which is the most cost-effective 

operation since the start level in the tank can be considered as “free” heat, an equation based 

on the average heat demand is used. Depending on the average heating demand during the six 

final hours of the simulation, the final value of the heat storage tank is set to a fixed value. The 

fixed value varies between the intervals of the average heating demand, if the average heating 

demand is high, then the fixed value is high, and if the average heating demand is low, then the 

fixed value is low. The reason to have this equation is to achieve a safer operation of the heat 

storage tank. If there are some unexpected issues with some of the base load production units, 

then it can be valuable to have a higher amount of heat stored in the tank to provide heat to the 

grid until the issues are fixed. It is possible for the operation technicians to regulate the 

intervals and fixed values, which is good cause different season would require different values. 

Another possibility to handle this would be to check at what time of the day the simulation 

would end, and if it is near the usual peak hours, it should store energy or vice versa. 

The linearization of the Johannes CHP seems to be working well. This can be seen in the result 

be analyzing the ratio between the direct condenser and the turbine condenser. The production 

from the turbine condenser is being lowered while the direct condenser is turned on, as well as 

being shut down when the direct condenser is being used on maximum capacity, this is the 

same functionality as described by Makkonen and Lahdelma (2005). This also helps to ensure 

a global optimum to be found by the algorithm (Lien & Amato, 2004).  

When the simulation model is compared to the previous model used at Bomhus Energi, it 

shows that the costs are decreased by around 400 000 SEK, Figure 17. The comparison is made 

for a scenario with rather high heat demand. The yield is not necessary as significant for 

scenarios with a lower heat demand since the more expensive production units do not have to 

be used. The fact that the fuel prices and electricity prices that the estimation is based on are 

specific for scenario I, also make the possible savings specific for scenario I. 
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7 CONCLUSION 

The purpose of this degree project is to develop a simulation model that optimizes heat 

production units in the municipality of Gävle, Sweden. The heat production units include 

combined heat and power plant, backup plants, industrial waste heat recovery, and a heat 

storage tank. The main idea is to use the heat storage tank to operate heat production to 

optimize the economic outcome. 

The result concludes the following. The heat storage tank is discharged when the demand is 

increasing to a peak and then charged when the demand is decreasing. The reason for this 

behavior is to avoid using the more expensive backup plants when the heat demand peaks. A 

critical part of the model is the simulation time, Bomhus Energi requested a model that is able 

to compute a result within 5 minutes. For the mixed integer non-linear model is the simulation 

time an issue when handling scenarios with relatively high heat demand. This is due to the 

non-linear constraints, which are related to the backup plants that are needed to operate the 

backup units. The simulation time can vary between different scenarios, from less than 30 

seconds to several hours. Therefore, it is recommended for Bomhus Energi to use the linear 

model, which can solve any simulated scenario in less than one minute. When the two models 

(minlp & lp) made in this report are compared to the model that Bomhus Energi uses to plan 

the production. A potential saving of 400 000 SEK can be achieved by producing heat 

according to the non-linear or linear model instead of using the Bomhus Energi model. The 

result of the comparison is only related to scenario I since the electricity price, fuel prices and 

boiler efficiencies are specific for that scenario.    
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8 FURTHER WORK 

To further improve the model and its result, some aspects can be considered by analyzing the 

result and the method. One way to make the model more dynamic and user-friendly a time 

aspect of how the storage unit is used at the end of the simulation. For example, it should 

consider the time of the day at the end of the simulation to know if there will be coming a large 

peak or if not. Also, the time of the year has an impact due to the temperature differences, for 

example, during the summer period, it might not be as important to have the same buffer as 

during the wintertime.  

The model can be done more detailed, in terms of using mass flows, pressures. Which also 

would make the model optimize the specifics of the plants to make them operate in an optimal 

way to reach the required power output. The curve fitted equations could also be studied to get 

their accuracy as well as the prognosis of the heat demand and electricity price. In order to 

make the CHP Johannes operate even smoother in terms of switching on and off the turbine, 

this will also help to extend the lifetime of it. This could be done in the same way as the 

minimum uptime and downtime for the backup units. 

Other software could be interesting to use and see how the performance is affected while using 

the same methodology. Different algorithms can also provide insight into how well the model 

performs compared to other, for example, the software GAMS with its CPLEX solver could be 

used. 
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Appendix 1. Linear programming 

%% Retrieve needed data 
    DH_demand      = input.demand; 
    J_DK_pris      = Priser_output.J_DK; 
    J_DK_RGK_pris  = Priser_output.J_DK_RGK; 
    J_TK_RGK_pris  = Priser_output.J_TK_RGK; 
    J_Min_pris     = Priser_output.J_Min; 
    J_DK_mp        = Johannes_output.DK_mp; 
    J_DK_RGK_mp    = Johannes_output.DK_RGK_mp; 
    J_TK_RGK_mp    = Johannes_output.TK_RGK_mp; 
    J_Min_mp       = Johannes_output.Min_mp; 
    SV_pris        = Priser_output.SV; 
    SV_mp          = SV_output.SV_mp; 
    IND_1_pris     = Priser_output.IND_1; 
    IND_2_pris     = Priser_output.IND_2; 
    IND_1_mp       = IND_output.IND_1_mp; 
    IND_2_mp       = IND_output.IND_2_mp;     
    HVP_pris       = Priser_output.HVP; 
    HVP_mp         = HVP_output.HVP_mp; 
    Carlsborg_pris = Priser_output.Carlsborg; 
    Carlsborg_mp   = Carlsborg_output.Carlsborg_mp; 
    Ersbo_pris     = Priser_output.Ersbo; 
    Ersbo_mp       = Ersbo_output.Ersbo_mp; 
    RGK_pris       = Priser_output.RGK; 
    RGK_mp         = RGK_output.RGK_mp; 
    HVK_D_pris     = Priser_output.HVK_D_pris; 
    HVK_F_pris     = Priser_output.HVK_F_pris; 
    HVK_E_pris     = Priser_output.HVK_E_pris; 
    HVK_D_mp       = HVK_output.HVK_D_mp; 
    HVK_F_mp       = HVK_output.HVK_F_mp; 
    HVK_E_mp       = HVK_output.HVK_E_mp; 
    %% Constraints 
    %% Linear constraints 
    %Define matrixes for constraint 
    n_eq_cons   = 2; 
    %Storage constraint 
    S_start     = zeros(n,1);   %Initial value for storage unit 
    S_s         = zeros(n,n);   %Storage 
    S_c         = zeros(n,n);   %Charge/Discharge 
    S_d         = zeros(n,n);   %Demand 
    S_J_DK_RGK  = zeros(n,n);   %Johannes DK RGK 
    S_J_TK_RGK  = zeros(n,n);   %Johannes TK RGK  
    S_J_DK      = zeros(n,n);   %Johannes DK 
    S_J_min     = zeros(n,n);   %Johannes min load 
    S_sv        = zeros(n,n);   %Waste heat  
    S_ind_1     = zeros(n,n);   %Evap 1 
    S_ind_2     = zeros(n,n);   %Evap 2 
    S_HVP       = zeros(n,n);   %HVP  
    S_Carlsborg = zeros(n,n);   %Carlsborg  
    S_Ersbo     = zeros(n,n);   %Ersbo  
    S_RGK       = zeros(n,n);   %Flue gas cond.  
    S_HVK_D     = zeros(n,n);   %Excess steam  
    S_HVK_F     = zeros(n,n);   %Solid fuel 
    S_HVK_E     = zeros(n,n);   %Electric boilers    
    %Demand constraint 
    D_start     = zeros(n,1);   %Initial value for storage unit 
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    D_s         = zeros(n,n);   %Storage 
    D_c         = zeros(n,n);   %Charge/Discharge    
    D_d         = zeros(n,n);   %Demand 
    D_J_DK_RGK  = zeros(n,n);   %Johannes DK RGK 
    D_J_TK_RGK  = zeros(n,n);   %Johannes TK RGK  
    D_J_DK      = zeros(n,n);   %Johannes DK 
    D_J_min     = zeros(n,n);   %Johannes min load 
    D_sv        = zeros(n,n);   %Waste heat 
    D_ind_1     = zeros(n,n);   %Evap 1 
    D_ind_2     = zeros(n,n);   %Evap 2 
    D_HVP       = zeros(n,n);   %HVP 
    D_Carlsborg = zeros(n,n);   %Carlsborg  
    D_Ersbo     = zeros(n,n);   %Ersbo 
    D_RGK       = zeros(n,n);   %Flue gas cond. 
    D_HVK_D     = zeros(n,n);   %Excess steam  
    D_HVK_F     = zeros(n,n);   %Solid fuel  
    D_HVK_E     = zeros(n,n);   %Electric boilers  
    %Loop in the correct values into the predefined matrixes 
    for i = 1:1:n       
     if i == 1 
        S_start(i,i)     = 1; 
        S_s(i,i)         = -1;           
        S_c(i,i)         = 1;                 
        D_c(i,i)         = -1; 
        D_d(i,i)         = -1; 
        D_J_DK_RGK(i,i)  = 1; 
        D_J_TK_RGK(i,i)  = 1; 
        D_J_DK(i,i)      = 1; 
        D_J_min(i,i)     = 1; 
        D_sv(i,i)        = 1; 
        D_ind_1(i,i)     = 1; 
        D_ind_2(i,i)     = 1; 
        D_HVP(i,i)       = 1; 
        D_Carlsborg(i,i) = 1; 
        D_Ersbo(i,i)     = 1; 
        D_RGK(i,i)       = 1; 
        D_HVK_D(i,i)     = 1; 
        D_HVK_F(i,i)     = 1; 
        D_HVK_E(i,i)     = 1; 
    else 
        S_s(i,i-1)       = 1; 
        S_s(i,i)         = -1; 
        S_c(i,i)         = 1;               
        D_c(i,i)         = -1;        
        D_d(i,i)         = -1; 
        D_J_DK_RGK(i,i)  = 1; 
        D_J_TK_RGK(i,i)  = 1; 
        D_J_DK(i,i)      = 1; 
        D_J_min(i,i)     = 1; 
        D_sv(i,i)        = 1; 
        D_ind_1(i,i)     = 1; 
        D_ind_2(i,i)     = 1; 
        D_HVP(i,i)       = 1; 
        D_Carlsborg(i,i) = 1; 
        D_Ersbo(i,i)     = 1; 
        D_RGK(i,i)       = 1; 
        D_HVK_D(i,i)     = 1; 
        D_HVK_F(i,i)     = 1; 
        D_HVK_E(i,i)     = 1; 
     end    
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    end 
    %Merge the matrixes 
    Aeq = 

[S_start,S_s,S_c,S_d,S_J_DK_RGK,S_J_TK_RGK,S_J_DK,S_J_min,S_sv,... 
           

S_ind_1,S_ind_2,S_HVP,S_Carlsborg,S_Ersbo,S_RGK,S_HVK_D,S_HVK_F,S_HVK_E;... 
           

D_start,D_s,D_c,D_d,D_J_DK_RGK,D_J_TK_RGK,D_J_DK,D_J_min,D_sv,... 
           

D_ind_1,D_ind_2,D_HVP,D_Carlsborg,D_Ersbo,D_RGK,D_HVK_D,D_HVK_F,D_HVK_E]; 
    Beq = zeros(n*n_eq_cons,1);     
    %% Inequality constraints! 
    n_ineq_cons = 1; 
    %Charge constraint 
    Y_start     = zeros(n,1);   %Initial value for storage unit 
    Y_s         = zeros(n,n);   %Storage 
    Y_c         = -eye(n,n);    %Charge/Discharge  
    Y_d         = zeros(n,n);   %Demand 
    Y_J_DK_RGK  = eye(n,n);     %Johannes DK RGK 
    Y_J_TK_RGK  = eye(n,n);     %Johannes TK RGK 
    Y_J_DK      = eye(n,n);     %Johannes DK 
    Y_J_min     = eye(n,n);     %Johannes min load 
    Y_sv        = zeros(n,n);   %Waste heat 
    Y_ind_1     = zeros(n,n);   %Evap 1 
    Y_ind_2     = zeros(n,n);   %Evap 2 
    Y_HVP       = zeros(n,n);   %HVP 
    Y_Carlsborg = zeros(n,n);   %Carlsborg 
    Y_Ersbo     = zeros(n,n);   %Ersbo 
    Y_RGK       = zeros(n,n);   %Flue gas cond. 
    Y_HVK_D     = zeros(n,n);   %Excess steam 
    Y_HVK_F     = zeros(n,n);   %Solid fuel  
    Y_HVK_E     = zeros(n,n);   %Electrical boilers 
    %Merge the matrixes 
    A = -[Y_start,Y_s,Y_c,Y_d,Y_J_DK_RGK,Y_J_TK_RGK,Y_J_DK,Y_J_min,... 
          Y_sv,Y_ind_1,Y_ind_2,Y_HVP,Y_Carlsborg,Y_Ersbo,Y_RGK,Y_HVK_D,... 
          Y_HVK_F,Y_HVK_E]; 
    B = -zeros(n*n_ineq_cons,1); 
    %% Objective function 
    f_s         = zeros(1,n+1);                  %No cost for storage  
    f_c         = zeros(1,n);                    %No cost for 

charge/discharge    
    f_d         = zeros(1,n);                    %No cost for the demand 
    f_DK_RGK    = ones(1,n).*J_DK_RGK_pris(:)';   %Cost for Johannes DK RGK 
    f_TK_RGK    = ones(1,n).*J_TK_RGK_pris(:)';   %Cost for Johannes TK RGK 
    f_DK        = ones(1,n).*J_DK_pris(:)';       %Cost for Johannes DK 
    f_min       = ones(1,n).*J_Min_pris(:)';      %Cost for Johannes min 

load 
    f_sv        = ones(1,n).*SV_pris(:)';         %Cost for Waste heat 
    f_ind_1     = ones(1,n).*IND_1_pris(:)';      %Cost for Evap 1 
    f_ind_2     = ones(1,n).*IND_2_pris(:)';      %Cost for Evap 2 
    f_HVP       = ones(1,n).*HVP_pris(:)';        %Cost for HVP 
    f_Carlsborg = ones(1,n).*Carlsborg_pris(:)';  %Cost for Carlsborg 
    f_Ersbo     = ones(1,n).*Ersbo_pris(:)';      %Cost for Ersbo 
    f_RGK       = ones(1,n).*RGK_pris(:)';        %Cost for RGK BEAB 
    f_HVK_D     = ones(1,n).*HVK_D_pris(:)';      %Cost for excess steam 
    f_HVK_F     = ones(1,n).*HVK_F_pris(:)';      %Cost for solid fuel 
    f_HVK_E     = ones(1,n).*HVK_E_pris(:)';      %Cost for electrical 

boilers 
    %Merge all objectives into one objective function 
    f = [f_s,f_c,f_d,f_DK_RGK,f_TK_RGK,f_DK,f_min,f_sv,f_ind_1,... 
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         f_ind_2,f_HVP,f_Carlsborg,f_Ersbo,f_RGK,f_HVK_D,f_HVK_F,f_HVK_E]; 
    %% Lower and upper bounds  
    Storage_start = input.Ack_start;    %Set storage initial value 
    lb_start_s    = Storage_start;      %Force initial storage value 
    ub_start_s    = Storage_start;      %Force initial storage value 
    lb_s          = ones(1,n)*20;               %Lower bound for storage 
    ub_s          = ones(1,n)*350;              %Upper bound for storage     
    %Decide the end level for the storage unit, depending on the demand 
    if mean(DH_demand(1,n-6:n)) > 200            
        lb_s(1,n) = 200; 
        ub_s(1,n) = 200; 
    elseif mean(DH_demand(1,n-6:n)) > 150        
        lb_s(1,n) = 170; 
        ub_s(1,n) = 170; 
    else 
        lb_s(1,n) = Storage_start; 
        ub_s(1,n) = Storage_start; 
    end     
    lb_c          = ones(1,n)*-40;              %Lower bound charging 
    ub_c          = ones(1,n)*40;               %Upper bound charging 
    lb_d          = DH_demand;                  %Force demand 
    ub_d          = DH_demand;                  %Force demand 
    lb_J_DK_RGK   = zeros(1,n);                 %Lower bound Johannes DK + 

RGK 
    ub_J_DK_RGK   = ones(1,n).*J_DK_RGK_mp(:)'; %Upper bound Johannes DK + 

RGK 
    lb_J_TK_RGK   = zeros(1,n);                 %Lower bound Johannes TK + 

RGK 
    ub_J_TK_RGK   = ones(1,n).*J_TK_RGK_mp(:)'; %Upper bound Johannes TK + 

RGK   
    lb_J_DK       = zeros(1,n);                 %Lower bound Johannes DK 
    ub_J_DK       = ones(1,n).*J_DK_mp(:)';     %Upper bound Johannes DK  
    lb_J_min      = ones(1,n).*J_Min_mp(:)';    %Forces minimum load 
    ub_J_min      = ones(1,n).*J_Min_mp(:)';    %Forces minimum load 
    lb_sv         = zeros(1,n);                 %Lower bound waste heat 
    ub_sv         = ones(1,n).*SV_mp;           %Upper bound waste heat 
    lb_ind_1      = zeros(1,n);                 %Lower bound evap 1 
    ub_ind_1      = ones(1,n).*IND_1_mp;        %Upper bound evap 1 
    lb_ind_2      = zeros(1,n);                 %Lower bound evap 2 
    ub_ind_2      = ones(1,n).*IND_2_mp;        %Upper bound evap 2 
    lb_HVP        = zeros(1,n);                 %Lower bound HVP 
    ub_HVP        = ones(1,n).*HVP_mp;          %Upper bound HVP 
    lb_Carls      = zeros(1,n);                 %Lower bound Carlsborg 
    ub_Carls      = ones(1,n).*Carlsborg_mp;    %Upper bound Carlsborg 
    lb_Ersbo      = zeros(1,n);                 %Lower bound Ersbo 
    ub_Ersbo      = ones(1,n).*Ersbo_mp;        %Upper bound Ersbo 
    lb_RGK        = zeros(1,n);                 %Lower bound BEAB RGK 
    ub_RGK        = ones(1,n).*RGK_mp;          %Upper bound BEAB RGK 
    lb_HVK_D      = zeros(1,n);                 %Lower bound excess steam 
    ub_HVK_D      = ones(1,n).*HVK_D_mp;        %Upper bound excess steam 
    lb_HVK_F      = zeros(1,n);                 %Lower bound solid fuel 
    ub_HVK_F      = ones(1,n).*HVK_F_mp;        %Upper bound solid fuel 
    lb_HVK_E      = zeros(1,n);                 %Lower bound electric 

boiler 
    ub_HVK_E      = ones(1,n).*HVK_E_mp;        %Upper bound electric 

boiler 
    %Merge all lower and upper bounds 
    

lb=[lb_start_s,lb_s,lb_c,lb_d,lb_J_DK_RGK,lb_J_TK_RGK,lb_J_DK,lb_J_min,... 
         lb_sv,lb_ind_1,lb_ind_2,lb_HVP,lb_Carls,lb_Ersbo,lb_RGK,... 
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         lb_HVK_D,lb_HVK_F,lb_HVK_E]; 
    

ub=[ub_start_s,ub_s,ub_c,ub_d,ub_J_DK_RGK,ub_J_TK_RGK,ub_J_DK,ub_J_min,... 
         ub_sv,ub_ind_1,ub_ind_2,ub_HVP,ub_Carls,ub_Ersbo,ub_RGK,... 
         ub_HVK_D,ub_HVK_F,ub_HVK_E];  
    %% Call the solver 
    [x,fval]=linprog(f,A,B,Aeq,Beq,lb,ub); 
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APPENDIX 2. Mixed integer nonlinear programming  

 %% Retrieve all input data from the Excel spreadsheet 
    DH_demand     = input.demand;              %Heating demand 

    J_DK_mp       = Johannes_output.DK_mp;     %Johannes DK available prod. 
    J_DK_RGK_mp   = Johannes_output.DK_RGK_mp; %Johannes DK + RGK available 

prod. 
    J_TK_RGK_mp   = Johannes_output.TK_RGK_mp; %Johannes TK + RGk available 

prod. 
    J_Min_mp      = Johannes_output.Min_mp;    %Johannes min load 
    SV_mp         = SV_output.SV_mp;           %Waste heat available prod. 
    IND_1_mp      = IND_output.IND_1_mp;       %Evap 1 available prod. 
    IND_2_mp      = IND_output.IND_2_mp;       %Evap 2 available prod. 
    HVP_mp        = HVP_output.HVP_mp;         %HVP available prod. 
    HVP_min       = HVP_output.HVP_min;        %HVP min load 
    Carlsborg_mp  = Carlsborg_output.Carlsborg_mp;%Carlsborg available 

prod. 
    Carlsborg_min = Carlsborg_output.Carlsborg_min;%Carlsborg min load 
    Ersbo_mp      = Ersbo_output.Ersbo_mp;         %Ersbo available prod. 
    Ersbo_min     = Ersbo_output.Ersbo_min;        %Ersbo min load 
    RGK_mp        = RGK_output.RGK_mp;             %BEAB RGK available 

prod. 
    HVK_D_mp      = HVK_output.HVK_D_mp;   %Excess steam available prod. 
    HVK_F_mp      = HVK_output.HVK_F_mp;   %Solid fuel available prod. 
    HVK_E_mp      = HVK_output.HVK_E_mp;   %Electric boilers available 

prod.         
    Name='Storage nonlinear'; 
    IntVars_values = zeros(1,n*17+1);   %For production units 
    IntVars_binary = ones(1,n*11);      %For binary variables 
    %Add regular variables and integers together 
    IntVars        = logical([IntVars_values,IntVars_binary]);  
    VarWeight      = [];                %No set priorities 

     
    %% 
    %Lower and upper bounds 
    Storage_start = input.Ack_start;   %Set storage initial value 
    lb_start_s    = Storage_start;     %Force initial storage value 
    ub_start_s    = Storage_start;     %Force initial storage value 
    lb_s          = ones(1,n)*20;      %Lower bound for storage 
    ub_s          = ones(1,n)*350;     %Upper bound for storage     
    %Decide the end level for the storage unit, depending on the demand 
    if mean(DH_demand(1,n-6:n)) > 200            
        lb_s(1,n) = 200;         
    elseif mean(DH_demand(1,n-6:n)) > 150        
        lb_s(1,n) = 170; 
    else 
        lb_s(1,n) = Storage_start; 
    end     
    lb_c          = ones(1,n)*-40;              %Lower bound charging 
    ub_c          = ones(1,n)*40;               %Upper bound charging 
    lb_d          = DH_demand;                  %Force demand 
    ub_d          = DH_demand;                  %Force demand 
    lb_J_DK_RGK   = zeros(1,n);          %Lower bound Johannes DK + RGK 
    ub_J_DK_RGK   = ones(1,n).*J_DK_RGK_mp(:)'; %Upper bound Johannes DK + 

RGK 
    lb_J_TK_RGK   = zeros(1,n);        %Lower bound Johannes TK + RGK 
    ub_J_TK_RGK   = ones(1,n).*J_TK_RGK_mp(:)'; %Upper bound Johannes TK + 

RGK   
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    lb_J_DK       = zeros(1,n);                 %Lower bound Johannes DK 
    ub_J_DK       = ones(1,n).*J_DK_mp(:)';     %Upper bound Johannes DK  
    lb_J_min      = ones(1,n).*J_Min_mp(:)';    %Forces minimum load 
    ub_J_min      = ones(1,n).*J_Min_mp(:)';    %Forces minimum load 
    lb_sv         = zeros(1,n);                 %Lower bound waste heat 
    ub_sv         = ones(1,n).*SV_mp;           %Upper bound waste heat 
    lb_ind_1      = zeros(1,n);                 %Lower bound evap 1 
    ub_ind_1      = ones(1,n).*IND_1_mp;        %Upper bound evap 1 
    lb_ind_2      = zeros(1,n);                 %Lower bound evap 2 
    ub_ind_2      = ones(1,n).*IND_2_mp;        %Upper bound evap 2 
    lb_HVP        = ones(1,n).*HVP_min;          %Lower bound HVP 
    ub_HVP        = ones(1,n).*HVP_mp;          %Upper bound HVP 
    lb_Carls      = ones(1,n).*Carlsborg_min;    %Lower bound Carlsborg 
    ub_Carls      = ones(1,n).*Carlsborg_mp;    %Upper bound Carlsborg 
    lb_Ersbo      = ones(1,n).*Ersbo_min;        %Lower bound Ersbo 
    ub_Ersbo      = ones(1,n).*Ersbo_mp;        %Upper bound Ersbo 
    lb_RGK        = zeros(1,n);                 %Lower bound BEAB RGK 
    ub_RGK        = ones(1,n).*RGK_mp;          %Upper bound BEAB RGK 
    lb_HVK_D      = zeros(1,n);                 %Lower bound excess steam 
    ub_HVK_D      = ones(1,n).*HVK_D_mp;        %Upper bound excess steam 
    lb_HVK_F      = zeros(1,n);                 %Lower bound solid fuel 
    ub_HVK_F      = ones(1,n).*HVK_F_mp;        %Upper bound solid fuel 
    lb_HVK_E      = zeros(1,n);                %Lower bound electric boiler 
    ub_HVK_E      = ones(1,n).*HVK_E_mp;       %Upper bound electric boiler 
    lb_binary     = zeros(1,n*11);            %Lower bound binary variables 
    ub_binary     = ones(1,n*11);             %Upper bound binary variables 
    %Merge all lower and upper bounds    

x_L=[lb_start_s,lb_s,lb_c,lb_d,lb_J_DK_RGK,lb_J_TK_RGK,lb_J_DK,lb_J_min,... 
         lb_sv,lb_ind_1,lb_ind_2,lb_HVP,lb_Carls,lb_Ersbo,lb_RGK,... 
         lb_HVK_D,lb_HVK_F,lb_HVK_E,lb_binary]; 
    

x_U=[ub_start_s,ub_s,ub_c,ub_d,ub_J_DK_RGK,ub_J_TK_RGK,ub_J_DK,ub_J_min,... 
         ub_sv,ub_ind_1,ub_ind_2,ub_HVP,ub_Carls,ub_Ersbo,ub_RGK,... 
         ub_HVK_D,ub_HVK_F,ub_HVK_E,ub_binary]; 
    %% Linear constraints 
    %storage constraint 
    S_start    = zeros(n,1);        %Initial value for storage 
    S_storage  = -eye(n,n);         %Storage 
    S_charge   = eye(n,n);          %Charge 
    S_zeros    = zeros(n,n);%Other variables not included in the constraint 

  
    %Minimal uptime/downtime for backup units 
    Up_start   = zeros(n,1);        %Initial value for storage      
    Up_zero    = zeros(n,n);        %Variables not included in constraint         
    Up_1       = zeros(n,n);        %Constraint 1 for uptime 
    Up_2       = zeros(n,n);        %Constraint 2 for uptime 
    Up_3       = zeros(n,n);        %Constraint for first time step 
    Down_1     = zeros(n,n);        %Constraint 1 for downtime 
    Down_2     = zeros(n,n);        %Constraint 2 for downtime     
    for i = 2:1:3 
        Up_3(i,i-1)  = 1;                 %Constraint for first time step 
        Up_3(i,i)    = -1;                %Constraint for first time step     
    end 
    %Ramp functions 
    R_start    = zeros(n,1);        %Initial value for storage         
    R_zero     = zeros(n,n);        %Variables not included in constraint 
    R_one      = eye(n,n);          %Constraint for rampfunction     
    R_one(1,1) = 0;                 %Removes constraint for first time step 
                                    %so it can be any value at start. 
    for i = 1:1:n 
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         if i==1 
            S_start(i,i)=1;         
         else 
            S_storage(i,i-1)=1;             
         end       
    end        
    for i = 4:1:n 
            Up_1(i,i-3)=-1; 
            Up_1(i,i-2)=1; 
            Up_1(i,i)=-1; 

             
            Down_1(i,i-3)=1; 
            Down_1(i,i-2)=-1; 
            Down_1(i,i)=1; 
    end 
    for i = 3:1:n 
            Up_2(i,i-2)=-1; 
            Up_2(i,i-1)=1; 
            Up_2(i,i)=-1; 

             
            Down_2(i,i-2)=1; 
            Down_2(i,i-1)=-1; 
            Down_2(i,i)=1; 
    end          
    for i = 2:1:n 
        R_one(i,i-1)=-1;                 
    end    

     
    A = [S_start,S_storage,S_charge,S_zeros,S_zeros,S_zeros,S_zeros,...                

%Storage 
                   S_zeros,S_zeros,S_zeros,S_zeros,S_zeros,S_zeros,... 
                   

S_zeros,S_zeros,S_zeros,S_zeros,S_zeros,S_zeros,S_zeros,S_zeros,... 
                   

S_zeros,S_zeros,S_zeros,S_zeros,S_zeros,S_zeros,S_zeros,S_zeros;...         
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %HVP up 1 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_1,Up_zero,Up_zero,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;... 
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %HVP up 2 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_2,Up_zero,Up_zero,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;... 
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %HVP first time step uptime 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_3,Up_zero,Up_zero,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;... 
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Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %Carlsborg up 1 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_1,Up_zero,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;... 
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %Carlsborg up 2 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_2,Up_zero,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;... 
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %Carlsborg first time step uptime 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_3,Up_zero,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;... 
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %Ersbo up 1 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_1,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;... 
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %Ersbo up 2 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_2,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;... 
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %Ersbo first time step uptime 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_3,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;... 
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %HVP down 1 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Down_1,Up_zero,Up_zero,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;... 
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %HVP down 2 
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Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Down_2,Up_zero,Up_zero,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;...          
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %Carlsborg down 1 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Down_1,Up_zero,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;... 
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %Carlsborg down 2 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Down_2,Up_zero,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;...                   
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %Ersbo down 1 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Down_1,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;... 
         

Up_start,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,..

.  %Ersbo down 2 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,... 
                   

Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Up_zero,Down_2,... 
                   Up_zero,Up_zero,Up_zero,Up_zero;...            
         

R_start,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,...           

%HVP +/- 
                   

R_zero,R_zero,R_one,R_zero,R_zero,R_zero,R_zero,R_zero,... 
                   

R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,... 
                   R_zero,R_zero,R_zero,R_zero;... 
         

R_start,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,...           

%Carlsborg +/- 
                   

R_zero,R_zero,R_zero,R_one,R_zero,R_zero,R_zero,R_zero,... 
                   

R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,... 
                   R_zero,R_zero,R_zero,R_zero;... 
         

R_start,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,...           

%Ersbo +/- 
                   

R_zero,R_zero,R_zero,R_zero,R_one,R_zero,R_zero,R_zero,... 
                   

R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,R_zero,... 
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                   R_zero,R_zero,R_zero,R_zero];                   

                                  
    %Upper and lower bounds for the linear constraints 
    b_L_storage       = zeros(1,n);              %Storage 
    b_L_up_down_start = ones(1,n*4*3+n*3)*-inf;  %Backups 

(HVP,Carls.,Ersbo) uptime/downtime/start 
    b_L_hvp           = ones(1,n)*-40;           %HVP +/- 
    b_L_carls         = ones(1,n)*-40;           %Carlsborg +/- 
    b_L_ersbo         = ones(1,n)*-40;           %Ersbo +/-     
    b_U_storage       = b_L_storage;    %Storage, '=' Enforces equality 
    b_U_up_start      = zeros(1,n*3*3); %Backups (HVP,Carls.,Ersbo) 

uptime/start                             
    b_U_down          = ones(1,n*2*3);  %Backups (HVP,Carls.,Ersbo) 

downtime 
    b_U_hvp           = ones(1,n)*40;   %HVP +/- 
    b_U_carls         = ones(1,n)*40;   %Carlsborg +/- 
    b_U_ersbo         = ones(1,n)*40;   %Ersbo +/-     
    %Merge all lower and upper bounds 
    b_L = [b_L_storage,b_L_up_down_start,b_L_hvp,b_L_carls,b_L_ersbo]; 
    b_U = [b_U_storage,b_U_up_start,b_U_down,b_U_hvp,b_U_carls,b_U_ersbo];                     
    %%      
    %Nonlinear constraints  
    c_L_demand = zeros(1,n);       %Demand 
    c_L_charge = ones(1,n)*-inf;   %Charging  
    c_U_demand = c_L_demand;       %Demand 
    c_U_charge = zeros(1,n);       %Charging 
    %Merge all lower and upper bounds 
    c_L = [c_L_demand,c_L_charge]; 
    c_U = [c_U_demand,c_U_charge];         

  
    %% 
    %Create initial guess from the lp optimization, setting binary variable 
    %accordingly to optimization from lp. 
    for i = 1:1:n 
        %Johannes 
        if Prognos(n*6+1+i) > 0 
            Prognos(n*17+1+i) = 1; 
        else 
            Prognos(n*17+1+i) = 0; 
        end 
        %SV 
        if Prognos(n*7+1+i) > 0 
            Prognos(n*18+1+i) = 1; 
        else 
            Prognos(n*18+1+i) = 0; 
        end 
        %IND 1 
        if Prognos(n*8+1+i) > 0 
            Prognos(n*19+1+i) = 1; 
        else 
            Prognos(n*19+1+i) = 0; 
        end 
        %IND 2 
        if Prognos(n*9+1+i) > 0 
            Prognos(n*20+1+i) = 1; 
        else 
            Prognos(n*20+1+i) = 0; 
        end 
        %HVP 
        if Prognos(n*10+1+i) > 0 
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            Prognos(n*21+1+i) = 1; 
        else 
            Prognos(n*21+1+i) = 0; 
        end 
        %Carlsborg 
        if Prognos(n*11+1+i) > 0 
            Prognos(n*22+1+i) = 1; 
        else 
            Prognos(n*22+1+i) = 0; 
        end 
        %Ersbo 
        if Prognos(n*12+1+i) > 0 
            Prognos(n*23+1+i) = 1; 
        else 
            Prognos(n*23+1+i) = 0; 
        end 
        %RGK BEAB 
        if Prognos(n*13+1+i) > 0 
            Prognos(n*24+1+i) = 1; 
        else 
            Prognos(n*24+1+i) = 0; 
        end 
        %HVK D 
        if Prognos(n*14+1+i)>0 
            Prognos(n*25+1+i) = 1; 
        else 
            Prognos(n*25+1+i) = 0; 
        end 
        %HVK F 
        if Prognos(n*15+1+i) > 0 
            Prognos(n*26+1+i) = 1; 
        else 
            Prognos(n*26+1+i) = 0; 
        end 
        %HVK E 
        if Prognos(n*16+1+i) > 0 
            Prognos(n*27+1+i) = 1; 
        else 
            Prognos(n*27+1+i) = 0; 
        end 
    end 

     
    %% 
    %Set intial guess to the solution from lp 
    x_0   = Prognos; 

    
    x_opt = []';        % One optimum known 
    f_opt = [];         % Value f(x_opt), optimal cost is 0. 

     
    x_min = [];         % Used for plotting, lower bounds 
    x_max = [];         % Used for plotting, upper bounds 

     
    %% 
    HessPattern = spalloc(n*28+1,n*28+1,0);%All elements in Hessian are 

zero.  
    %Create the nonlinear constraint pattern matrix 
    %Demand constraint 
    D_start   = zeros(n,1);                        %Storage initial value 
    D_storage = -eye(n,n);                         %Storage 
    D_charge  = -eye(n,n);                         %Charge    
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    D_demand  = -eye(n,n);                         %Demand 
    D_prod    = eye(n,n);               %Production Units     
    D_x       = eye(n,n);               %Same for all binary variables    
    %Complete the matrix for the storage unit       
    for i = 1:1:n 
         if i == 1 
            D_start(i,i) = 1;        
         else 
            D_storage(i,i-1) = 1;           
         end       
    end   
    %Charge constraint 
    C_start   = zeros(n,1);             %Storage initial value 
    C_storage = zeros(n,n);             %Storage 
    C_charge  = eye(n,n);               %Charge   
    C_demand  = zeros(n,n);             %Demand 
    C_J_prod  = -eye(n,n);              %Johannes production 
    C_prod    = zeros(n,n);             %Other units (not Johannes) 
    C_x_J     = eye(n,n);               %Binary variable for Johannes 
    C_x       = zeros(n,n);             %Binary variables for other units     
    %Create the nonlinear constraint pattern. 
    ConsPattern = 

[D_start,D_storage,D_charge,D_demand,D_prod,D_prod,D_prod,... 
                   D_prod,D_prod,D_prod,D_prod,D_prod,D_prod,... 
                   D_prod,D_prod,D_prod,D_prod,D_prod,D_x,D_x,D_x,... 
                   D_x,D_x,D_x,D_x,D_x,D_x,D_x,D_x;... 
                   

C_start,C_storage,C_charge,C_demand,C_J_prod,C_J_prod,C_J_prod,C_J_prod,C_p

rod,... 
                   C_prod,C_prod,C_prod,C_prod,C_prod,C_prod,C_prod,... 
                   C_prod,C_prod,C_x_J,C_x,C_x,C_x,C_x,C_x,C_x,... 
                   C_x,C_x,C_x,C_x];                
    %%  
     fIP = [];   % An upper bound on the IP value wanted. Makes it possible 
     xIP = [];   % to cut branches. xIP: the x value giving fIP      
    %%  
    %Setup the problem according to TOMLAB syntax 
    Prob = minlpAssign('minlpQG_f', 'minlpQG_g', 'minlpQG_H', HessPattern, 

... 
                      x_L, x_U, Name, x_0, ... 
                      IntVars, VarWeight, fIP, xIP, ... 
                      A, b_L, b_U, 'minlpQG_c', 'minlpQG_dc', 

'minlpQG_d2c', ... 
                      ConsPattern, c_L, c_U, ...  
                      x_min, x_max, f_opt, x_opt); 
    Prob.DUNDEE.optPar(20) = 1; 
    Prob.P = 1;   % Needed in minlpQG_xxx files 
    %Call the function, MINLP-BB 
    Result  = tomRun('MINLPbb',Prob,2);  
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Appendix 3. Nonlinear constraints (MINLP) 

%Non-linear constraints 
function c = minlpQG_c(x, Prob) 
     %Get number of time steps,n. 
     n  = evalin('base', 'n'); 
     %Define matrixes 
     A1 = zeros(n,1); 
     A2 = zeros(n,1); 
 for i = 1:1:n 
        %Demand constraint 
        A1(i,1) = -x(n*1+1+i)-

x(n*2+i+1)+(x(n*3+i+1)+x(n*4+i+1)+x(n*5+i+1)+... 
                  

x(n*6+i+1))*x(n*17+i+1)+x(n*7+i+1)*x(n*18+i+1)+x(n*8+i+1)*x(n*19+i+1)+... 
                  

x(n*9+i+1)*x(n*20+i+1)+x(n*10+i+1)*x(n*21+i+1)+x(n*11+i+1)*x(n*22+i+1)+... 
                  

x(n*12+i+1)*x(n*23+i+1)+x(n*13+i+1)*x(n*24+i+1)+x(n*14+i+1)*x(n*25+i+1)+... 
                  x(n*15+i+1)*x(n*26+i+1)+x(n*16+i+1)*x(n*27+i+1);                  
        %Charge constraint 
        A2(i,1) = x(n*1+1+i)-(x(n*3+i+1)+x(n*4+i+1)+x(n*5+i+1)+... 
                  x(n*6+i+1))*x(n*17+i+1);                
 end 
c = [A1;A2]; 
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Appendix 4. Objective function (MINLP) 

%Objective function 
function f = minlpQG_f(x, Prob) 
    %% Retrieve needed data 
    n              = evalin('base', 'n'); 
    Priser_output  = evalin('base', 'Priser_output');     
    J_DK_pris      = Priser_output.J_DK; 
    J_DK_RGK_pris  = Priser_output.J_DK_RGK; 
    J_TK_RGK_pris  = Priser_output.J_TK_RGK; 
    J_Min_pris     = Priser_output.J_Min;    
    SV_pris        = Priser_output.SV;     
    IND_1_pris     = Priser_output.IND_1; 
    IND_2_pris     = Priser_output.IND_2;    
    HVP_pris       = Priser_output.HVP;     
    Carlsborg_pris = Priser_output.Carlsborg; 
    Ersbo_pris     = Priser_output.Ersbo;     
    RGK_pris       = Priser_output.RGK; 
    HVK_D_pris     = Priser_output.HVK_D_pris; 
    HVK_F_pris     = Priser_output.HVK_F_pris; 
    HVK_E_pris     = Priser_output.HVK_E_pris; 
    %% Actual cost, dependent if the plant is operating or not 
    T_start   = 0; 
    Tank      = zeros(1,n); 
    Charge    = zeros(1,n); 
    D         = zeros(1,n); 
    J_DK      = J_DK_pris.*x(n*17+2:n*18+1,1); 
    J_DK_RGK  = J_DK_RGK_pris.*x(n*17+2:n*18+1,1); 
    J_TK_RGK  = J_TK_RGK_pris.*x(n*17+2:n*18+1,1); 
    J_min     = J_Min_pris.*x(n*17+2:n*18+1,1); 
    SV        = SV_pris.*x(n*18+2:n*19+1,1); 
    IND_1     = IND_1_pris.*x(n*19+2:n*20+1,1); 
    IND_2     = IND_2_pris.*x(n*20+2:n*21+1,1); 
    HVP       = HVP_pris.*x(n*21+2:n*22+1,1); 
    Carlsborg = Carlsborg_pris.*x(n*22+2:n*23+1,1); 
    Ersbo     = Ersbo_pris.*x(n*23+2:n*24+1,1); 
    RGK       = RGK_pris.*x(n*24+2:n*25+1,1); 
    HVK_D     = HVK_D_pris.*x(n*25+2:n*26+1,1); 
    HVK_F     = HVK_F_pris.*x(n*26+2:n*27+1,1); 
    HVK_E     = HVK_E_pris.*x(n*27+2:n*28+1,1); 
    x_binary  = zeros(1,n*11);  
%% Merge the objective function       
f=[T_start,Tank,Charge,D,J_DK_RGK',J_TK_RGK',J_DK',J_min',SV',IND_1',... 
   IND_2',HVP',Carlsborg',Ersbo',RGK',HVK_D',HVK_F',HVK_E',x_binary]*x; 
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APPENDIX 5. Bomhus vs MINLP 
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Figure 18 Previous vs. Minlp model 
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